Hearing Transcript

REFERENCE TO THE BOARD RATE MITIGATION OPTIONS AND IMPACTS MUSKRAT FALLS PROJECT

October 7, 2019

PRESENT:

The Board:

Board Members

Darlene Whalen, Chair
Dwanda Newman, Vice-Chair
John O'Brien, Commissioner

Parties:

Nalcor Energy /

Newfoundland and Labrador Hydro
David Eaton, Q.C., Counsel - Nalcor
Geoff Young, Q.C., Counsel - NL Hydro

Consumer Advocate

Dennis Browne, Q.C. - Consumer Advocate
Stephen Fitzgerald, Counsel - Consumer Advocate

Island Industrial Customer Group

Paul Coxworthy, Counsel
Denis Fleming, Counsel

Witnesses:

Synapse Energy Economics, Inc.

Robert Fagan
Dr. Asa Hopkins
Melissa Whited

Newfoundland Power

Kelly Hopkins, Counsel
Liam O'Brien, Counsel

Board Counsel / Staff

Jacqueline Glynn, Board Counsel
Maureen Greene, Q.C., Reference Counsel
Sara Kean, Assistant Board Secretary

	Page 1	Page 3		
1	(9:00 a.m.)	1		Hopkins. I'm also a Vice-President at
2	CHAIR:	2		Synapse Energy Economics. I've been at
3	Q. Good morning, everybody. Happy Monday. I	3		Synapse for almost three years. My training
4	understand there's no preliminary matters,	4		is as a physicist. I have worked in energy
5	so I guess we'll go straight to you, Ms.	5		efficiency for the US Federal Government at
6	Greene, and you can introduce the first	6		the US Department of Energy, and I ran
7	presentation for today.	7		what's called the State Energy Office,
8	GREENE, Q.C.:	8		equivalent to some portion of the Ministry
9	Q. Thank you, and good morning, Chair and	9		here for the US State of Vermont for five
10	Commissioners. I'd like to first begin by	10		years or so, including developing energy
11	introducing the panel. Start with Bob	11		policy across energy supply, energy
12	Fagan. Mr. Fagan, could you please	12		efficiency, electrification, and overall
13	introduce yourself and give a very brief	13		decarbonisation efforts for the state,
14	outline of your background and experience as	14		including crafting its comprehensive energy
15	it relates to the work you did for the Board	15		plan. Since moving to Synapse, I have
16	for this reference.	16		worked on electrification and
17	MR. FAGAN:	17		decarbonisation projects and energy
18	A. Good morning, everyone. My name is Bob	18		efficiency in a number of different states.
19	Fagan. I'm a Vice-President at Synapse	19		I've testified as an expert witness in
20	Energy Economics. I've been at Synapse for	20		Vermont and in Quebec, as well as now here
21	about fifteen years. I have a Mechanical	21		today.
22	Engineering Degree and I've been an Engineer	22		NE, Q.C.:
23	and an Energy Analyst for onward of thirty	23	Q.	Thank you, and Ms. Whited.
24	years now working in this field. As it	24		HITED:
25	pertains to this reference, my primary	25	A.	Good morning. My name is Melissa Whited.
	Page 2			Page 4
1	qualifications have to do with modelling of	1		I'm a Principal Associate at Synapse Energy
2	the economic aspects of electric power	2		Economics. I've been at Synapse for ten
3	systems, and I also have an extensive	3		years. I work extensively on electricity
4	background in energy efficiency or	4		regulation topics, as well as rate design,
5	conservation and demand management, and the	5		and I've testified before seven state
6	general nature of wholesale market	6		commissions and the Federal Energy
7	constructs throughout the United States, and	7		Regulatory Commission. I've also worked on
8	extensive experience working in the Maritime	8		rate design issues in Nova Scotia, Prince
9	area, primarily resource planning in Nova	9		Edward Island, and Quebec, in Canada, and
10	Scotia and Prince Edward Island	10		now also in Newfoundland. I've presented on
11	jurisdictions.	11		rate design issues before the National
12	GREENE, Q.C.:	12		Association of Regulatory Utility
13	Q. And have you presented as an expert witness	13		Commissioners in the United States, and I
14	in other proceedings?	14		have a Masters of Arts in Agricultural and
15	MR. FAGAN:	15		Applied Economics, as well as a Masters of
16	A. Yes, I've been an expert witness roughly	16		Science in Environment and Resources.
17	nineteen states at the Federal Energy	17		NE, Q.C.:
18	Regulatory Commission and in five provinces	18	Q.	Thank you. Before we begin your
19	- I think six provinces including this	19		presentation, I understand, Mr. Fagan, that
20	province.	20		there are two corrections you'd like to make
21	GREENE, Q.C.:	21		to your report.
22	Q. Thank you. Dr. Hopkins, could you similarly	22		AGAN:
23	give a brief outline of your background?	23	A.	That's correct.
24	DR. HOPKINS:	24		NE, Q.C.:
25	A. Sure. Good morning. My name is Asa	25	Q.	The first I'd like to bring up is page 60 of

Page 5				Page 7
		1		higher in the province. The second question
2	MR. FAGAN:	2		had to do with the energy and the capacity
3	A. Yes.	3		balances from Muskrat Falls Project required
4	GREENE, Q.C.:	4		to meet load and what would be remaining for
5	Q. And could you please outline the correction	5		surplus energy and capacity. We directly
6	you would like to make?	6		compute in our modelling processes what
7	MR. FAGAN:	7		remains for export from Muskrat Falls after
8	A. Yes, the correction is in the heading for	8		accounting for the Island and Labrador load
9	Figure 24. Instead of the word	9		requirements, and the overall resource
10	"residential", that should be "commercial".	10		capabilities in the province. The third
11	GREENE, Q.C.:	11		question asked about the potential
12	Q. The second correction I understand is on	12		electricity rate impacts associated with the
13	page 149 of your report in Table 76, is that	13		options in question one, and we compute
14	correct?	14		these impacts from all of our scenarios
15	MR. FAGAN:	15		relative to a base case where no
16	A. Yes, that's correct, Table 76, and this	16		electrification or no CDM measures are
17	pertains to the second row, the value listed	17		taken. Because of the material effect on
18	there for annual heat pump electricity use.	18		consumption associated with electrification
19	Instead of 29,613, that value should be	19		or CDM, we also looked at the corollary
20	10,768. We made this correction in response	20		effect of a reduced oil and gasoline use in
21	to an informal inquiry by Newfoundland	21		the electrification cases, and the bill
22	Power, their first informal inquiry response	22		impact effect, average customer bills across
23	question, and I just neglected to get this	23		all of our scenarios.
24	changed for the September 25th revision to	24	GREENE, Q.C.:	
25	the report.	25	Q.	If we could move then to a summary of your
Page 6				Page 8
1	GREENE, Q.C.:	1		overall findings with respect first to your
2	Q. Thank you. If we go now to your	2		work that you did on growing revenue
3	presentation, as you just mentioned, your	3		opportunities?
4	report was revised on September 25th of this	4	MR. FAGAN:	
5	year and your presentation essentially	5	A.	Sure. Our summary finding, there's no magic
6	reviews your findings in your report, is	6		bullets for mitigation arising from
7	that correct?	7		electrification or increased export sales.
8	MR. FAGAN:	8		These are all predicated on customer actions
9	A. Yes.	9		which occur slowly over time, but can have
10	GREENE, Q.C.:	10		significant effects in the long term.
11	Q. First if we could begin, I would like you to	11		Electrification is the biggest factor that
12	outline what were the areas or issues on the	12		would mitigation rate increases because
13	reference questions that Synapse was asked	13		essentially you sell more energy to cover
14	by the Board to review and analyze?	14		the fixed cost associated with the Muskrat
15	MR. FAGAN:	15		Falls Project. You know, we do note that
16	A. Yes. This slide outlines the scope of our	16		the oil and gasoline savings that arises
17	analysis. The reference questions asked us	17		from electrification is sort of the new
18	to determine whether or not it's more	18		money that's available to help reduce the
19	advantageous to maximize domestic load or to	19		bill effect for customers. We definitely
20	maximize exports. Essentially in our	20		note that these benefits can be distributed
21	modelling, our electrification scenarios	21		unequally depending upon who's in a position
22	look at the effect of increasing domestic	22		to electrify and in which sectors. So
23	load, and our conservation and demand	23		programmatic efforts and policies can help
24	management scenarios cause consumption to be	24		to address any inequities that might
25	lower and, therefore, exports sales to be	25		otherwise result when thinking about who

	Page 9			Page 11
1	would benefit from electrification. We also	1		GREENE, Q.C.:
2	find that CDM and demand response in	2	Q.	You've already outlined that you looked at
3	multiple forms is particularly important,	3		
4	given the concerns about possible capacity	4		finding is that it is better to increase
5	expansion costs in the province. CDM will	5		electrification in the province because
6	reduce peak consumption and it will also	6		revenue is higher from internal sales. I
7	reduce the peak megawatts, so it avoids	7		was hoping to expand and explain your
8	those potential expansion costs and it also	8		findings on expert sales?
9	has the effect of increasing export sales.	9	MR. FAGAN:	
10	It can exacerbate the rate increases, but it	10	A.	Yes, that's correct, essentially you can
11	can result in lower bills. Essentially,	11		obtain increased revenues if you sell more
12	customers pay bills. If the rates are	12		energy, more electricity, internal than
13	higher, but their overall consumption is	13		selling on the export market primarily
14	lower, their net bills can be lower.	14		because the export market prices are
15	GREENE, Q.C.:	15		relatively low, they don't represent firm
16	Q. Can we carry on to the next -	16		capacity and energy transfers. It's mostly
17	MR. FAGAN:	17		more of a non-firm short term energy market.
18	A. Continuing, rate design and existing	18		We did look at whether or not it's better if
19	policies and the Muskrat Falls Projects	19		export market prices are particularly
20	surplus, we did find that rate design could	20		higher. Things do look much better if export
21	be a potentially powerful tool to shape	21		market prices are higher, but we don't have
22	consumption patterns and improve the	22		any particular basis to think that the
23	outcomes for customers. We did find that	23		export markets are - prices for export
24	the lower cost and the simpler	24		markets are going to be from the medium
25	implementation of smart electric vehicle	25		level that we model in our analysis. We do
	Page 10			Page 12
1	charges in lieu of a full scale automatic	1		note that when you do maximize export sales
2	metering infrastructure to monitor hourly	2		if you were to do electrification, the total
3	loads would be least regrets, but it is	3		amount of export sales, you know, could rise
4	possible that a broader application of Time-	4		to more than 200 million dollars a year by
5	of-Use rates using a set of automated	5		the end of the decade, and that includes the
6	metering infrastructure to measure on an	6		effects of both the Muskrat Falls and recall
7	hourly basis could potentially be economic,	7		energy export sales. Those export sales are
8	depending upon some of the details of	8		much lower, but you electrify rising to 141
9	exactly how much it costs and how those	9		million by the end of the decade, but what's
10	benefits accrue across the different rate	10		coupled with the minimal revenues from
11	classes. We critically note the importance	11		export sales is much higher revenues from
12	of both the federal and the provincial	12		actual electrification of revenue streams
13	policies to help. The policies, as we	13		within the province. Our modelling takes
14	outline in the report, specifically address	14		into account the combination of both CDM and
15	fuel switching, energy efficiency, and	15		electrification effects, and the overall
16	rebates for electric vehicles, all of which	16		volume and the overall pattern of sales will
17	will directly impact the electrification and	17		vary depending upon which combinations of
18	the CDM costs and effects that you see in	18		electrification, CDM, and rate design we
19	our report. We do note that the overall	19		see. As I just noted, we do show
20	surplus from Muskrat Falls Project is of	20		sensitivity on market prices that you can
21	sufficient quantity to fully support the	21		see increases export revenues on the order
22	higher level electrification efforts that we	22		of 75 million dollars higher by 2030
23	model in our analysis. We note on Reference	23		relative to our base case on export sales if
24	Question 3, that we do show rate and bill	24		prices were to be higher, but also note that
25	impacts for all of our model scenarios.	25		the other side of that envelope, if export

	Page 13			Page 15
1	market prices were lower, you would see a	1	GREENE, Q.C.:	
2	reduction in the revenues received relative	2	Q.	Okay, you've already mentioned that you not
3	to our base case.	3		only looked at the impact on rates of
4	GREENE, Q.C.:	4		increased electrification, and CDM, and
5	Q. How did you determine the appropriate	5		export markets, you also looked at the
6	forecast of the export pricing to use in	6		impact on customer bills, and can you
7	your modelling?	7		explain why you did that and what it showed?
8	MR. FAGAN:	8		AGAN:
9	A. We received confidential data from Nalcor on	9	A.	Yes. Essentially, with increasing levels of
10	a forecast of export market prices. Those	10		CDM, either promoted by a programmatic
11	export market prices are forecast for	11		expansion or prompted by customers doing
12	essentially the New England and Nova Scotia	12		their own actions now in the anticipation of
13	markets through export paths by way of	13		higher prices, that has a significant effect
14	Quebec, and export paths by way of Nova	14		on the average annual consumption for a
15	Scotia. Those export market prices are	15		given customer. Certainly anyone who
16	generally pegged to the price of electricity	16		electrifies, be it at the residential or at
17	in the North Eastern US, especially in New	17		the commercial institutional level will see
18	England, and those prices tend to be tied to	18		significant increases in the consumption at
19	the effect of natural gas prices on	19		their facilities. Those two effects means
20	electricity prices in that region. The	20		that it's critically important to also look
21	numbers that they provided are not	21		at the quantity consumed, in addition to the
22	unreasonable. If anything, electricity	22		price that applies for a given customer.
23	prices in the North Eastern US are likely to	23		That's why we looked at bills, and in the
24	be lower than what we may see right now	24		case of electrification scenarios, it's also
25	because there continues to be downward	25		important that it serves an additional well
	Page 14			Page 16
1	pressure on those prices due to the	1		of savings available from reduced
2	availability of less expensive natural gas	2		expenditures on oil and gasoline. Though
3	and due to the increasing level of both	3		the reference questions clearly say rate
4	solar and wind resources in the North	4		mitigation, technically and economically
5	Eastern United States, all of which put a	5		it's critically important to also look at
6	damper on the market prices seen in that	6		the bill effect associated with changes in
7	region.	7		consumption, not just the rate effects.
8	(9:15 a.m.)	8		NE, Q.C.:
9	GREENE, Q.C.:	9	Q.	In your slide here with respect to summary
10	Q. So as I understand your answer, you're	10		findings for rates, you reference a Synapse
11	starting point were the forecast provided by	11		based case. Can you just briefly explain
12	Nalcor, but you applied your own judgement	12		what that is?
13	and analysis to determine if they were	13		AGAN:
14	reasonable and representative of the market,	14	A.	Sure. Our portion of responding to the
15	is that correct?	15		reference questions had to do with looking
16	MR. FAGAN:	16		at changes on the demand side, increased
17	A. Yes, we do think that they are reasonable.	17		sales through electrification, or increased
18	We did look at fundamentals from the US	18		export sales in part through CDM to make the
19	Energy Information Administration, annual	19		increased energy available for export. So
20	energy outlook, which forecasts both short	20		everything that we do is relative to a
21	and long term prices, and the numbers which	21		reference case, a reference load forecast,
22	are more detailed from Nalcor do represent,	22		and a reference level of export sales, and a
23	in our opinion, a reasonable indication of	23		reference level of electrification. So all
24	what prices are going to look like in the	24		of our scenarios are compared to that
25	future.	25		reference level, so they're not absolute.

	Page 17	Page 19		
	What we're able to show clearly, for	1		customers.
2	example, is in the high electrification	2		NE, Q.C.:
3	scenario rates would be 1 cent per kilowatt	3	Q.	One of the reference questions also asked
4	hour lower by 2030, but what we don't show	4		the Board to review the amount of capacity
5	or we don't take on the task, is what is the	5		and energy that would be available for
6	absolute rate in 2030 because that will	6		internal use and export use, and your next
7	depend on what the total eventual revenue	7		slide addresses that question. Can you
8	requirement is, and there's a number of	8		please review your findings in that area?
9	things that both Liberty has looked at, and	9		AGAN:
10	that still undergoing analysis suggests what	10	A.	Yes. The modelling tool that we used, which
11	that revenue requirement would be. So our	11		is the same tool that Hydro used, the PLEXOS
12	focus was just to tease out the effect of	12		Production Cost Modelling Tool, is
13	the CDM, the effect of electrification, the	13		essentially a way to keep track of the
14	effect of rate design, and how it influences	14		generation, the consumption, and the flows
15	the pattern of consumption, the pattern of	15		in an economically and technically correct
16	export sales, and the resulting revenues	16		manner. So what we find is that if you look
17	that attach to those different patterns of	17		just at Muskrat Falls, you cover the
18	consumption or sales.	18		requirements on the island, that you end up
19	GREENE, Q.C.:	19		with surplus energy availability that ranges
20	Q. Is there anything else you'd like to say for	20		on the order of 1.7 to on the order of 2.1
21	your summary findings on rates and bills in	21		terawatt hours, and that's what the
22	Slide 8?	22		beginning portion of this slide shows, which
23	MR. FAGAN:	23		comes from Table 41 of the report. At the
24	A. The last thing, we do indicate that it's the	24		same time, Muskrat Falls is on the order of
25	combination of scenarios that maximize	25		5 terawatt hours, recall energy quantities
	Page 18			Page 20
1	electrification, but at the same time	1		are on the order of 2 terawatt hours, so
2	maximize CDM effects, in particular reducing	2		depending upon how you do the basic energy
3	the peak load exposure that the province	3		balances, the total revenues, the total
4	will see. We do make a core assumption that	4		quantities available for export sales
5	flows from Hydro's Marginal and Generation	5		actually ranges up to 3.5 terawatt hours if
6	Cost Study, that basically there is always	6		you take both recall and Muskrat Falls into
7	value to reducing the peak load in the	7		account, and that's essentially what this
8	province. On the margin, there's both a	8		table is just showing that the range of
9	short and a long term need for capacity. We	9		surplus for export sales depends on whether
10	do not directly look at reliability and the	10		or not you count both recall and Muskrat
11	potential for the LIL to be out of service,	11		Falls, or you try to look just at Muskrat
12	but indirectly in assigning value to all	12		Falls.
13	peak shaving efforts, be they directly from	13		NE, Q.C.:
14	conservation and demand management measures,	14	Q.	One of your principal findings is that
15	such as heat pumps or shown improvements	15		increased energy usage or electrification is
16	that reduce peak, or be they flowing from	16		the most beneficial opportunity to increase
17	demand response, which is a shorter term	17		revenue to offset the rates. Could you on
18	reduction of peak, both of those peak	18		the next slide just give a brief overview of
19	shaving actions come with a value of	19		what your analysis showed for the
20	capacity that we use the number that's in	20		electrification potential?
21	the Marginal and Generation Cost Study, and	21		AGAN:
22	that's a critically important point to make	22	A.	Yes. We focused on the electrification
23	to support our findings that it's the	23		potential in two sectors; buildings and
24	combination of both electrification and CDM	24		transport. What this slide shows is that by
25	that provides the best benefit for	25		2030, under certain assumptions for

	Page 21	Page 23		
1	basically penetration of electric vehicles	1		situation where you potentially have a
2	and conversion of electric resistance	2		capacity problem on the island, thus any
3	heating - I'm sorry, conversion of oil	3		demand side resource that can contribute to
4	heating to either heat pump, or in some	4		mitigating that capacity problem has value.
5	cases electric resistance heating, could add	5		Now it also saves energy and it saves energy
6	up to 600 gigawatt hours per year, and	6		primarily during winter hours, and depending
7	that's on a provincial basis of on the order	7		upon how the programs have done, and whether
8	of 9,000 gigawatt hours per year. The	8		or not you use rate design, the energy
9	savings that you see from this essentially	9		savings you see from CDM can free up energy
10	stem from oil savings, which ramps up to on	10		for export sales during some of the higher
11	the order of 244 million dollars per year by	11		priced hours in the winter. Most of the
12	2030. The direct contribution to revenues	12		export market prices are higher during
13	associated with this electrification, taking	13		winter hours, and generally higher during
14	into account the costs of incentives for	14		peak winter hours rather than off-peak
15	heat pumps and the cost for electric vehicle	15		winter hours. So that's why CDM and demand
16	charges, for example, ranges from in the	16		response become particularly important as
17	early years to 67 million dollars up to on	17		you move into an era where you have plenty
18	the order of 134 million by 2030 for the	18		of energy, but you have some concerns about
19	high electrification case. I'm sorry, that	19		capacity.
20	was the direct contribution to revenues as	20		NE, Q.C.:
21	the slide indicates. The net mitigation is	21		And could you just show your findings?
22	on the order of 10's of millions of dollars	22		AGAN:
23	from the high electrification scenarios,	23	A.	Sure. This slide just shows that the peak
24	reaching upwards of 50 million dollars net	24		savings that we find stem from both
25	by 2030 for the high scenario. This slide	25		conservation demand management, as
	Page 22			Page 24
1	represents the peak load additions	1		conventionally known in the Province, and
2	associated with electrification. I'll note	2		also from demand response, and this would be
3	that these are the additions you see on	3		demand response separate from the
4	peak. These totals are not necessarily	4		interruptible curtailment capacity that
5	coincident with the island's winter peak.	5		currently exists in the Province, and then a
6	That coincident is a little bit lower than	6		significant portion of this is potentially
7	the 147 you see here. It's more on the	7		available from the effects of heat pumps
8	order of 100 megawatts. This just shows the	8		displacing or supplementing the use of
9	variation in the addition to peak seen	9		electric resistance heating. As we show on
10	across the different types of	10		later slides, the heat pump technologically
11	electrification by transport or by building	11		is a superior way of getting heat from use
12	sector.	12		of electricity.
13	GREENE, Q.C.:	13		NE, Q.C.:
14	Q. You've already mentioned that you also	14	Q.	And of course, these - if you do focus on
15	studied Conservation Demand Management, and	15		CDM and demand management response, these
16	can you explain why that was important here	16		types of programs add additional cost for
17	because again it seems almost	17		the customer and for the utilities. Did you
18	counterintuitive if we need to grow revenue,	18		consider costs in your analysis?
19	why do you focus on reducing demand? So can	19		AGAN:
20	you just briefly explain that and what you	20	A.	We did. Essentially on the island, because
21	found?	21		of the capacity value associated with peak
22	MR. FAGAN:	22		shaving, that peak shaving coming from
23	A. Sure. The primary value in the CDM, and the	23		either DR or from conventional CDM, the
24	demand response, is the ability to shave	24		programs tend to be fairly cost effective
25	peak. If you retire Holyrood, you have a	25		with a benefit cost ratio from the utility's

	Page 25			Page 27
1	perspective of on the order of 3.0.	1		CDM to peak shave and at the same time using rate design to provide incentives for
2	The core inputs into this computation	2		
3	is what is the value of export sales that	3		consumption, preferably during off-peak
4	get freed up from CDM and what is the value	4		periods of time, results in the best
5	of capacity if you peak shave on the island.	5		customer outcomes. What we clearly show is
6	The costs shown here, basically are	6		that there more than enough surplus
7	amortized CDM program costs based on basic	7		available from Muskrat Falls to support
8	rubrics for the cost of more aggressive CGM	8		these electrification needs.
9	programs. There's sort of a wide range on	9		I will note that in all of our analysis
10	how you could actually implement more	10		we assume the LIL is in service and we
11	aggressive CDM. So the costs that are seen	11		assume the LIL is providing energy and
12	here could vary. You could certainly - you	12		capacity of the LIL. To the extent that
13	would want to maximum participating customer	13		that would not be the case then you begin to
14	contributions to any CDM measures so these	14		perturb the findings that we've seen,
15	costs could be lower.	15		although the capacity value would become
16	Alternatively, you can use CDM program	16		even more important under any situation such
17	design as a way to address the potential	17		as that.
18	inequities that can occur through folks who	18		NE, Q.C.:
19	are less able to have the capital to make	19	Q.	You've already indicated earlier in your
20	improvements in residences or commercial	20		presentation that the impact on rates
21	businesses for CDM. But we generally find	21		overall with the most optimistic of your
22	that because of this capacity value, the CDM	22		scenarios of electrification and CDM would
23	and the demand response are particularly	23		not help with the rate mitigation problem.
24	important and particularly economically	24		Is it correct that by 2030 the most that
25	valuable.	25		this would produce would be about a cent a
	Page 26			Page 28
1	GREENE, Q.C.:	1		kilowatt hour off the domestic rate? Is
2	Q. So, we've just reviewed at a high level the	2		that generally what your analysis showed?
3	areas that you reviewed for the Board and	3		AGAN:
4	now I'd like you, at that same high level,	4	A.	That's correct. The rate impacts themselves
5	to summarize your findings in terms of the	5		are significant, but they're not large.
6	reference questions that you did some	6		NE, Q.C.:
7	analysis on.	7	Q.	But overall, in terms of the appropriate use
8	MR. FAGAN:	8		of energy and maximization of the resource,
9	A. Sure. In short, increasing load through	9		this is what you believe is the path forward
10	electrification, improving energy efficiency	10		for us here in Newfoundland?
11	and using demand response to reduce peak and	11		AGAN:
12	allow for increased export sales leads to	12	A.	Yes, absolutely.
13	the best possible outcomes for customers.	13		NE, Q.C.:
14	(9:30 a.m.)	14	Q.	So, now we're going to look at a little bit
15	It allows for the sale of the remaining	15		more detail about what work you did to
16	Muskrat Falls surplus to external markets	16		support those overall findings, and the
17	and the CDM effect helps to prevent a need	17		first one we look at would be - and you've
18	for future capacity expansion costs.	18		already mentioned that you model scenarios.
19	We model a lot of different scenarios	19		Can you describe generally what you did and
20	to try to tease out differential effects	20		why you did it?
21	between the different combinations of	21		AGAN:
22	electrification, CDM and rate design effects	22	A.	Yes. We wanted to model the interactive
23	and essentially, we find that some	23		effect of rate design, increase CDM and
24	combination of those three things,	24		electrification. The patterns of
25	aggressively pursuing electrification, using	25		consumption associated with electrification

	Page 29		Page 31
1	are different from the patterns of energy	1	example, if the rates are - if the rates end
2	savings associated with CDM and both those	2	up being set at, for example, 17 cents in
3	patterns, in addition to underlying existing	3	2020 , the effect of a high electrification
4	load patterns, can be shaped by rate design.	4	scenario would be to reduce the rate by on
5	So, in order to economically capture the	5	the order of eight-tenths of a cent per
6	variant patterns of consumption in export	6	kilowatt hour and that's shown in this
7	sales, we used a model that looked at things	7	second row, the second set of columns.
8	on an hourly level and then multiple	8	Conversely, under a high CDM only
9	scenarios just allowed us to mix and match	9	scenario where you don't do any
10	different levels of rate design and	10	electrification other than the small amounts
11	different levels of electrification or CDM.	11	that are in the base case, you would see
12	I mean, essentially there's infinite	12	increases in rates on the order of 1.4 cents
13	permeations of scenarios that we could have	13	per kilowatt hour by 2030.
14	modelled and we had to try to narrow that	14	But what's coupled with that rate
15	down. We still ended up doing scenario	15	increase, as shown in the last two columns
16	analysis on roughly 38 different	16	of this table, is generally a reduction in
17	combinations, which is quite a lot to try to	17	total energy expenditures and a reduction in
18	discern the differences.	18	the average energy expenditures on an
19	GREENE, Q.C.:	19	average customer basis. And that's what
20	Q. And if we could go to your next slide. This	20	this shows.
21	is - this slide illustrates the results of	21	So, the last two columns capture the
22	what we chose as the key illustrative	22	effect of reduced consumption and the effect
23	scenarios that you ran. So, could you	23	of increased consumption but oil savings.
24	please explain what this table shows?	24	Whereas the first column captures the effect
25	MR. FAGAN:	25	of changing export sales and also changing
	Page 30		Page 32
1	A. Sure. The results for all the scenarios are	1	internal sales associated with the level of
2	contained in the report. We do have	2	CDM or electrification that's used.
3	listings of the effect across all 30 some	3	GREENE, Q.C.:
4	odd scenarios. But essentially, we just	4	Q. And when you looked at the average energy
5	chose a handful of scenarios to show the	5	expenditures, that's for all customers? Is
6	general pattern for CDM, for electrification	6	that correct?
7	and for the effect of rate design, time of	7	MR. FAGAN:
8	use rates or the use of electric vehicle	8	A. That's correct. This does not reflect, and
9	smart chargers. And what this shows, this	9	as we note in the report and as we noted in
10	presents five different metrics. One is	10	the summary slides in this presentation,
11	just the change in utility revenues.	11	this does not affect - sorry. This does not
12	Essentially utility revenues will increase	12	reflect the distribution of these effects
13	with electrification and they'll decrease	13	across rate classes or across sectors.
14	with CDM.	14	Depending upon what sort of cost allocation
15	GREENE, Q.C.:	15	is used from Muskrat Falls, for example,
16	Q. And this - and excuse me, this is the change	16	depending on the specifics of rate design
17	from your base case reference?	17	approaches, depending upon how Governmental
18	MR. FAGAN:	18	policies are implemented. All of those
19	A. Yes.	19	things can affect essentially the
20	GREENE, Q.C.:	20	distribution of the benefits and the costs
21	Q. It's always in a comparison to what your	21	and to try to guess at exactly what that
22	reference case is?	22	would look like at this point in time would
23	MR. FAGAN:	23	be premature. We wanted to primarily answer
24	A. Yes, that's correct. All of this is a	24	the reference questions on the whole to get
25	change from the reference case. So, for	25	an indication of what makes the most sense,

Page 33
1
2
3
4
5
6
7
8
9
Q. So, if we could take just Scenario 12A where
we see the average rate mitigation by 2030 ,
it's there in red, which is just over a cent
a kilowatt hour. That would show what we
just talked about. Is that correct that if
there is increased electrification, the
Delta Utility revenues increase in 2025,
2030, and the average rate, cents a kilowatt
hour, would go down? Is that correct?
MR. FAGAN:
A. Yes.
GREENE, Q.C.:
Q. That's how we are to read that table?
MR. FAGAN:
A. Yes, that's correct.
GREENE, Q.C.:
Q. Okay. So, if we can go to the next table?
MR. FAGAN:
A. Yes. This table essentially presents the
components of the change in utility revenues
that we saw on the prior table and it
Page 34
increasing export sales, increasing domestic load and get a rough idea of what that quantitative effect would look like.
GREENE, Q.C.:
Q. So, if we could take just Scenario 12A where we see the average rate mitigation by 2030 , it's there in red, which is just over a cent a kilowatt hour. That would show what we just talked about. Is that correct that if there is increased electrification, the Delta Utility revenues increase in 2025, 2030, and the average rate, cents a kilowatt hour, would go down? Is that correct?
MR. FAGAN:
A. Yes.

GREENE, Q.C.:
Q. That's how we are to read that table?

MR. FAGAN:
A. Yes, that's correct.
Q. Okay. So, if we can go to the next table?

MR. FAGAN:
A. Yes. This table essentially presents the components of the change in utility revenues that we saw on the prior table and it

Page 34
indicates that the effect on revenues comes
from not just the increasing revenues from electrification or the decrease in revenues if there's improved energy efficiency, but it also comes from the change in export revenues that would be seen and it also comes from whatever costs might be incurred to implement the CDM or to implement the electrification policies and it also takes into account the change in exposure to capacity costs that the Province would see.

So, for example, if we look at that
same 12 A , scenario 12 A , the export revenues actually decline in scenarios where you have a lot more electrification because you're using the energy internally as opposed to exporting it. But the internal revenues increase significantly. There is a cost associated with those electrification policies, although in our accounting, we do not include the $\$ 5,000$ per vehicle Federal rebate, for example. We do include the cost associated with heat pump incentives and electric vehicle charging stations that would be required. We also note that for
that scenario, there's a net increase in peak load. So, you do have exposure to the need for additional capacity costs and that's as you can see in the 20 - both 2025 and 2030.

So, essentially, this table breaks down the components to get to the net mitigation effects of the change in utility revenues that you see.
GREENE, Q.C.:
Q. If we could turn now to the more detail with respect to your work for the load forecast. Did you consider the impact on the forecast load of a significant increase in price?
MR. FAGAN:
A. Yes, we did. It's a tricky matter. With the projected rate increase that the Province is looking at, it's very difficult to use the traditional econometric estimating techniques, which basically look back and see how consumption has changed as prices have changed. But all of that occurs within a particular band width of price increase and the band width of price increase we're talking about now renders
Page 36
that method a lot less effective and a lot less certain.

So, essentially, you can think about well, what options are in front of people and the options that are in front of people are switching from electricity or changing behaviours or changing technologies to use less electricity. And those types of responses are reflected in Hydro's forecast, what they call their low rate forecast, which contains a particular price elasticity that's essentially a relatively higher price elasticity than you might see if you just looked at conventional econometric estimating techniques.

So, based primarily on that and it based on that, the Hydro's forecast is not an unreasonable forecast. We do think that they were a little bit - that they estimated a little bit high in some of those out years. Newfoundland Power, for example, estimated just a little bit lower. So, as you'll see in the subsequent slide - I'm just going to jump two slides up. As you'll see in this slide, for example, the dotted

	Page 41		Page 43	
	area, is the same pattern that we saw in the	1		increasing electrification. Is that
2	previous slide. That's the island load	2		correct?
3	pattern. But that the total supply capacity	3		OPKINS
4	available for export market sales is greater	4	A.	That's correct. So, we looked at the costs
5	than those peak needs and what you'll see is	5		that might come through various types of
6	that generally, they're able to sell a lot	6		programs. For example, the electric vehicle
7	more, as much as they can, during the on-	7		incentive, although we assumed that that
8	peak periods and sell less during the off-	8		incentive would be covered by the Federal
9	peak periods because the on-peak periods	9		Government. We also looked at heat pump
10	come with greater potential for revenue.	10		incentives and also the costs for installing
11	EENE, Q.C.:	11		charging stations.
12	Q. So turning now to electrification, which is	12		NE, Q.C.:
13	the most significant opportunity to increase	13	Q.	Okay. So, if we go to slide 32, we see the
14	revenue in your analysis. I want to look	14		results of your analysis. Could you just
15	just at a little bit more detail and you	15		explain them briefly, please?
16	already discussed how you looked at	16		OPKINS:
17	electrification for buildings and for in the	17	A.	So, this is the high electrification
18	transportation area. So, Dr. Hopkins, could	18		scenario. The units are the total energy by
19	you just outline a little bit more about how	19		year. Different sectors are able to
20	you did that analysis?	20		electrify at different rates. So, you see
21	DR. HOPKINS:	21		Memorial University replacing one and then a
22	A. Sure. In transportation, we looked at	22		second boiler as assumed and modelled by us
23	predominantly electric vehicles, both light	23		that relatively early institutional
24	and medium duty vehicles. You see that	24		buildings, again, moving relatively earlier.
25	described as LDV and MDV. Medium duty	25		You get to see the relative scale of
	Page 42			Page 44
1	vehicles are things like delivery vehicles	1		residential, small and large commercial
2	and buses. We also looked at the potential	2		buildings, which are substantial but much
3	for further electrification of the port here	3		smaller than the institutional load, partly
4	in St. John's, although you'll see on the	4		because there's fewer square feet that we
5	slides that that's a pretty minimal effect.	5		assumed would electrify and partly because
6	Building electrification, we looked at	6		those buildings are electrifying with heat
7	conversion of oil heating to electric	7		pumps, which use a lot less electricity per
8	heating for residential and for small and	8		amount of heat delivered.
9	large commercial buildings. We've modelled	9		Transportation sector has a somewhat
10	that as conversion to heat pumps. Whereas,	10		different adoption shape, as you see, with
11	for institutional use, in particular	11		the market developing much more towards the
12	Memorial University where the demand for	12		latter end of the period. This reflects the
13	very high heat is more likely, we modelled	13		increasing availability of different
14	that as conversion to electric resistance.	14		electric vehicle models as they become more
15	We developed low and high	15		available and also reductions in cost in
16	electrification scenarios within each sector	16		electric vehicles presuming to make adoption
17	and those scenarios are designed to give a	17		faster later in the period.
18	bookend sense of what the impacts on the	18		The next slide is the low scenario
19	electric system might be from lower or	19		case. The shapes are similar, but the
20	higher electrification.	20		values are substantially lower, just for
21	GREENE, Q.C.:	21		lower rate of adoption. Only one boiler at
22	Q. Okay. Those were the assumptions that you	22		Memorial University and a much slower
23	used for each of your scenarios and did you	23		adoption of electric vehicles.
24	- when we go to slide 31, you also looked at	24		NE, Q.C.:
25	costs that would be associated with	25	Q.	Okay. So, if we could go to slide 34 where

	Page 45		$\overline{\text { Page } 47}$ and the rate design, which Ms. Whited will	
1	you talk about the cost impacts. Could you	1		
2	please explain this slide?	2		discuss later, does make some effect from
3	DR. HOPKINS:	3		the electric vehicle owner's perspective. A
4	A. Sure. We looked at - you know, there's a	4		more favourable rate is available to them in
5	question for electrification, will people	5		terms of time of use or some sort of
6	actually do it, but does it make sense for	6		incentive rate, the more favourable the
7	customers to actually electrify their end	7		switch is.
8	uses. So, we looked at that in two	8		NE, Q.C.:
9	different ways. One, this slide shows the	9	Q.	And you also looked at the impact for heat
10	aggregate. So, if you look at buildings,	10		pumps, is that correct?
11	for example, the figure here, in aggregate	11		HOPKINS:
12	across all of the buildings are the folks	12	A.	That's correct. So, this is the same
13	paying the energy bills in these buildings,	13		calculation, but for a single home heating
14	are they paying less if they electrify than	14		with a heat pump using-again financing over
15	they would if they were using - heating	15		five years, using Newfoundland Power's
16	using oil.	16		existing loan product. If oil prices are
17	So, the two high cases shown here, for	17		high, then the oil savings relative to
18	example, the high oil and high heat pump,	18		electric basically pays for the heat pump
19	shows the total spending on fuel, depending	19		over the course of the first five years and
20	on which fuel those folks were using for	20		then it's all savings from there on out.
21	their buildings and you see that the heat	21		So, you could see that this, if oil prices
22	pump case is substantially lower than the	22		are high, it would be quite economical for a
23	oil case. A general sense that in	23		household to switch to using heat pumps. If
24	aggregate, consumers in the Province would	24		oil prices are lower, it's a little bit more
25	be saving money by switching from oil to	25		break-even where there's some additional
	Page 46			Page 48
1	heat pumps.	1		costs while you're paying off the system and
2	GREENE, Q.C.:	2		some savings later, but it's a little bit
3	Q. Okay.	3		closer to 50/50.
4	DR. HOPKINS:	4		NE, Q.C.:
5	A. The other two that - the other way that we	5		Moving now to CDM and Demand Response, can
6	looked at this, shown here and on the next	6		you briefly describe how you did that
7	slide. This is for electric vehicles and	7		analysis and what it showed?
8	the following one for heat pumps, looks at	8		OPKINS:
9	the individual customer economics. So, if	9	A.	Yes. So, we were interested, as Mr. Fagan
10	you assume, for example, in the electric	10		described, predominately in the savings that
11	vehicle that a EV owner finances a new	11		could come from lower peak load and avoided
12	electric vehicle over five years and	12		capacity costs, but many kinds of CDM
13	depending on whether gasoline is higher	13		measures are also result, of course, in
14	forecast or lower forecast prices, based on	14		energy savings. So, we looked at a base
15	Canadian federal forecast data, generally	15		case, a low case and a high case. The base
16	speaking that folks who would get an EV	16		case is basically a continuation of current
17	would pay a little bit more, negative	17		levels of programs, minimal adoption of heat
18	savings, increase in cost, while they're	18		pumps and the savings that embedded
19	paying off the vehicle. But then for the	19		essentially in the elasticity response that
20	balance of the life of the vehicle, they	20		Mr. Fagan described before. And then, the
21	would see substantial savings from charging	21		low and high cases reflect incremental
22	their vehicle with electricity rather than	22		additional CDM and heat pump installation.
23	driving on gasoline. It's obviously more	23		We did, also did a low and a high case for
24	cost effective to drive an electrical	24		demand response. We looked at that from and
25	vehicle if the price of gasoline is higher	25		end-use model, so building up from potential

	Page 49			Page 51
1	savings and adoption rates in heating,	1		discount the potential savings that couldthat technical data would imply and assumed
2	lighting, hot water, refrigeration, et	2		
3	cetera, and amortized the costs of the	3		that folks would, in fact, fall back on
4	resulting CDM Programs over seven years as	4		electric resistance heat perhaps more than
5	is the current practice here and calculated	5		they need to. Then the technical data would
6	out the benefit cost values that Mr. Fagan	6		imply in order to be conservative about just
7	described already in the summary.	7		how much savings might be achievable. So,
8	GREENE, Q.C.:	8		you can see the discount in the table at the
9	Q. So, if we go to slide 39, that just outlines	9		bottom between the full savings and the
10	the assumptions that you used for adoption	10		average savings reflects that correction for
11	rates for your various scenarios, is that	11		a conservatism.
12	correct?	12		NE, Q.C.:
13	DR. HOPKINS:	13	Q.	Okay. And the next slide shows the summary
14	A. That's correct, yeah. The adoption rates	14		of savings?
15	are generally higher in the residential	15		OPKINS:
16	sector as they have been historically and	16	A.	Yes, so this is those three cases, the base
17	higher in Newfoundland than in Labrador.	17		case, low case and high case total amount of
18	I'll just mention that this lower figure	18		achieved savings. Base case continuing
19	here is the same one that was corrected in	19		programs would save on the order of 400
20	the report.	20		gigawatt hours by 2030, whereas the low case
21	GREENE, Q.C.:	21		adds about 130 gigawatt hours on top of
22	Q. Right.	22		that. And the high case is about 300
23	DR. HOPKINS:	23		gigawatt hours above that and that's the
24	A. The figure here is-that chart corresponds to	24		sort of the classic CDM portfolio separate
25	the commercial case rather than to the	25		from the heat pumps. And heat pumps are
	Page 50			Page 52
1	residential case.	1		shown in the lower chart where the low-end
2	GREENE, Q.C.:	2		base case assumptions for a CDM used a low
3	Q. Okay. On slide 40, you then have a slide	3		penetration assumption for heat pumps, where
4	that shows a heat pump performance and	4		heat pumps save, I mean, somewhat over 150
5	potential savings. Is that correct?	5		gigawatt hours by 2030. In the high case
6	DR. HOPKINS:	6		where if Newfoundland were to follow the
7	A. Yes, that's correct. So, a large fraction	7		trajectory of some European jurisdictions in
8	of the potential CDM savings in the province	8		which heat pumps have become essentially the
9	have to do with the adoption of heat pumps,	9		default replacement for electric resistance
10	and the reason why heat pumps present such	10		heat, then you might save as many as 700
11	substantial savings with respect to electric	11		gigawatt hours by 2030.
12	resistance heat is illustrated in the figure	12		NE, Q.C.:
13	here in which the-which is from real data of	13	Q.	Turning now to a little more detail on the
14	major performance of heat pumps in real	14		low forecast. On slide 43, previously we
15	homes in cold climates. The Y axis is the	15		talked about the energy balance. Slide 43
16	coefficient of performance, essentially the	16		shows us the capacity that would be
17	efficiency of the heat pump where one is a	17		available after, with muskrat Falls. That
18	hundred percent efficient or equivalent to	18		slide 43 excludes recall. And can you
19	electric resistance. And you can see that,	19		explain that recall is and why you chose to
20	you know, at freezing, the coefficient	20		show the capacity without the use of recall?
21	performance is well over two and a half.	21		AGAN:
22	It's even over one and a half down below	22	A.	Yes, Muskrat Falls is on the order of 800
23	minus 20. So, there is substantial	23		megawatts. The recall block is on the order
24	potential savings even on the coldest days	24		of 225 megawatts. So, there's a significant
25	from the adoption of heat pumps. We did	25		amount of capacity available in Labrador.

	Page 53		Page 55
1	Essentially, you need a sizable portion of	1	aggressive levels of CDM. You see the
2	Muskrat Falls across the link to meet the	2	exports sales volumes rising to 4.5 , to an
3	requirements on the Island on the peak	3	extreme level, as much as 5 terawatt hours
4	winter days. And that's what this slide	4	in an extreme low load case. The revenues
5	essentially shows, that on the order of 600	5	that are tied to those volumes essentially
6	megawatts is required across the link from	6	follow the same pattern as the volumes
7	Muskrat Falls in order to meet the	7	themselves. So, in the high electrification
8	requirements which leaves a few hundred	8	case, there's less revenue that you're
9	megawatts available for export. Essentially	9	receiving from export sales on the order of
10	the capacity for export, either by way of	10	140 million by the end of the decade, and
11	the Island path towards Nova Scotia and New	11	conversely, in the high CDM case, for
12	England or by way of the Quebec path,	12	example, the export revenues in total rise
13	depending upon the total of capacity that's	13	to on the order 200 million dollars by the
14	flowing and the prices through those two	14	end of the decade.
15	paths. The second slide which represents	15	GREENE, Q.C.:
16	including recall, essentially makes, if you	16	Q. Okay. So, turning now to rate design, Ms.
17	make the presumption that the recall	17	Whited, can you-why is it necessary to
18	available after meeting Labrador	18	consider rate design when we're talking
19	requirements under a base forecast for	19	about electrification and CDM?
20	Labrador, there is additional remaining	20	MS. WHITED:
21	capacity from the combination of recall and	21	A. So, there are several things that rates do.
22	TwinCo assets in Labrador such that there's	22	They can encourage customers to shift their
23	an additional hundred megawatts available	23	consumption to certain hours of the day.
24	for export. So, the net amount of export	24	And so, we wanted to look at rate design and
25	capacity available from the combination of	25	how it can shape customer load in order to
	Page 54		Page 56
1	recall capacity and Muskrat Falls is on the	1	maximize export revenues to the highest
2	order of 300 megawatts. Whereas if you just	2	value hours or specially to minimize peal
3	look at Muskrat Falls, the amount is on the	3	demand, especially for new electrified
4	order of 200 megawatts. So, these slides	4	loads. Rate design can also be used to
5	are analogous to the energy slides that were	5	encourage electrification. If you can
6	presented earlier.	6	provide a lower rate on the off-peak hours
7	GREENE, Q.C.:	7	that encourages customers, for example, to
8	Q. Okay.	8	adopt electric vehicles and charge them
9	(10:00 a.m.)	9	during the off-peak hours. So, we looked at
10	MR. FAGAN:	10	several different designs and we made sure
11	A. The next two slides just present the total	11	to base those on marginal costs so that the
12	export volumes and the total export revenues	12	off-peak rates were always set above
13	associated with the surplus energy tied to	13	marginal cost. So, to go into a little bit
14	all of the resources, both Muskrat Falls and	14	more detail, we looked at rate design as a
15	the recall block. So, what this indicates	15	tool to do several different things:
16	is in our base case, you know, going out	16	increase adoption of electric vehicles and
17	towards 2030, you see that the annual	17	other beneficial technologies that can
18	available export sales are on the order of	18	easily be shifted; reduce the peak demand
19	3.5 terawatt hours. And what you see at the	19	and then reap all the benefits in terms of
20	bottom of the slide is in the high	20	avoided capacity costs; and again, to shift
21	electrification case, there's 500 gigawatt	21	consumption on the Island to those hours
22	hours less available because you're	22	that have lower export prices so that you
23	consuming that internal. And in this	23	can maximize export sales during the high-
24	scenario is where you may have an extreme	24	priced hours. We considered three different
25	low load or the effect of just high	25	options primarily. One was the time-of-use

	rates with critical-peak pricing for all 5 rates with critical-peak pricing for all			Page 59
1		1		night. So, that helps you avoid charging
2	customers. We did a combination of time-of-	2		during the on-peak hours and so it gives you
3	use and critical-peak pricing because you	3		a capacity benefit. So, what we have found
4	get a lot more capacity benefit from	4		from our rate design analysis was that time-
5	critical-peak pricing than just time-of-use	5		of-use rates for electric vehicles make a
6	alone. So, it was our assumption that it	6		lot of sense since you can shift a lot of
7	would be much more cost effective to that.	7		load fairly easily and you can also
8	The second option that we considered was	8		implement time-of-use rates without doing
9	time-of-use rates, only for transportation,	9		full advanced metering infrastructure. You
10	for electric vehicles and this can be done	10		can use those smart chargers to roll out the
11	through the use of smart chargers. And it	11		time-of-use rates for EVs at a lot lower
12	could avoid the need to do a full roll-out	12		cost. This can also help incentivise
13	of advance metering infrastructure. And	13		transportation electrification, so helping
14	then, finally, we looked at some incentive	14		to get to a higher electrification scenario.
15	rates, lower priced flat rates for	15		The time-of-use rates, plus critical-peak
16	electrical vehicles to encourage the	16		pricing with advanced-metering
17	adoption of those technologies. The charts	17		infrastructure has a reasonably positive
18	on this slide show some stylized examples of	18		impact, but we recommend doing a little bit
19	time-of-use rates and critical-peak pricing.	19		more analysis to dig into the actual cost of
20	And what happens is that the critical-peak	20		that advanced-metering infrastructure. We
21	pricing actually gets layered on top of the	21		assumed a 300-dollar-per-meter all-in cost
22	time-of-use rate. The time-of-use rate that	22		based on recent experience across the
23	we used was a two-period-time-of-use-rate	23		Canadian Provinces and a little bit in the
24	model with the peak hours between 6:00 a.m.	24		United States. That could be tested by
25	and 11:00 a.m. and then again from 4:00 p.m.	25		issuing an RFP and getting more accurate
	Page 58			Page 60
1	to 9:00 p.m. The critical-peak-pricing	1		pricing. And then, looking at how customer
2	rate, that would only be called a few times	2		load actually would respond in the province
3	per year and it would have a much higher	3		through doing some pilots. We looked at
4	price during those hours. So, moving on to	4		examples from Quebec and from Ontario and
5	slide 51, we looked at the effects of time-	5		from the Northwest United States to estimate
6	of-use pricing on electric vehicles in other	6		how customers might respond under time-of-
7	jurisdictions. In particular, we looked at	7		use rates with critical-peak pricing, but
8	this example from Detroit Edison as to how	8		there's been very little overall analysis in
9	electric vehicles respond to time-of-use	9		winter-peaking territories. So, it would be
10	rates. And because electric vehicles are a	10		very advantageous to gather some data on the
11	large load and they can be relatively easily	11		ground here in Newfoundland just to verify
12	programed to automatically charge off-peak	12		those assumptions.
13	hours, and most driving actually does not	13		NE, Q.C.:
14	occur during off-peak hours, it's a fairly	14	Q.	So, just to summarize on rate design, I
15	easy load to shift and it has quite a large	15		understand that you did not come up with
16	impact. So, this slide here just shows the	16		specific rates that you are recommending,
17	flat rate in the light blue. A lot of	17		but your analysis was more in terms of
18	people on a flat rate have no incentive to	18		directional as opposed to a specific rate
19	charge off-peak, so they simply plug in when	19		design. Is that correct?
20	they get home from work. If you implement a	20		HITED:
21	time-of-use rate, then that's the darker	21	A.	That's correct. We did test some specific
22	blue line. You can see there that most of	22		rates just to understand what the impact
23	the charging starts to occur after the off-	23		would be on customers who were not
24	peak rates come into play late at night, so	24		participating in those, for example, EV
25	11:00 p.m. and throughout the middle of the	25		time-of-use rates, and we did present those

	Page 61		Page 63
1	results in the report, but overall the	1	of it and then you also are able to sell
2	results were based on assumptions regarding	2	more energy externally when you've
3	shifting of load from overall results in	3	implemented the CDM. So, while
4	other jurisdictions, not on specific rates.	4	electrification is best, I'm not trying to
5	GREENE, Q.C.:	5	minimize the importance of maximizing the
6	Q. Okay. Turning now to your overall	6	export sales. As Melissa indicated, the
7	observations from the work that you did.	7	time-of-use rates using smart charging for
8	Mr. Fagan, what are the take-aways that we	8	electric vehicles seems to make the most
9	should take from your analysis?	9	sense initially, but a little bit more
10	MR. FAGAN:	10	careful analysis, you know, could reveal
11	A. I think the points listed on this slide have	11	that broader use of AMI could make sense for
12	generally been covered in the presentation	12	the province. And then, lastly, but
13	this morning, but at the highest level,	13	certainly not least, the government-federal
14	policy supported electrification and	14	and provincial policies have a significant
15	enhanced CDM including the main response	15	effect on reducing the costs for energy
16	makes the most sense for customer outcomes.	16	efficiency and for electrification.
17	Electrification clearly has the highest	17	GREENE, Q.C.:
18	mitigation value because of its increasing	18	Q. If your findings are generally accepted,
19	load to contribute to paying for fixed	19	what would you recommend be the next steps
20	costs. The CDM is critically important	20	to do further analysis?
21	because of its ability to help avoid future	21	MR. FAGAN:
22	expenditures in capacity needs, and at the	22	A. Well, essentially as you would expect, based
23	same time, it does allow increased levels of	23	on the information and we've provided, the
24	export sales and it helps to reduce bills at	24	specific policies around electrification
25	individual facility levels because of	25	would need to be developed. Certainly, the
	Page 62		Page 64
1	reduced consumption. As Melissa had	1	form of incentives that might be used for
2	indicated, rate design guided by the high-	2	equipment such as heat pumps would be
3	level analysis we show here can lead to the	3	important. I mean, for example, a policy
4	most efficient price signalling. The	4	discussion could revolve around how much of
5	analysis we did captures that, in large	5	an incentive are you providing for heat
6	part, but by capturing what the effective	6	pumps and are there minimum standards for
7	export sales look like when you have	7	those heap pumps that you're looking at? Do
8	different levels of rate design and you	8	you couple provision of heat-pump rebates
9	shift the buckets of consumption internally	9	with, you know, a requirement to, you know,
10	to allow for greater levels of the export	10	to try to improve building shelves at the
11	sales. We do note existing levels of	11	same time? EV charges. Figuring out where
12	industrial curtailment and potentially	12	and how many. We have a general sense of
13	increased levels of that for demand response	13	the total number of charges you would need,
14	is critically important. That's a winter-	14	but exactly where they end up going in, and
15	peak capacity or peak-load shaving measure	15	as I note below, the rate structures that
16	that doesn't necessarily involve a reduction	16	would apply to those would be important.
17	in energy consumption and that's	17	So, developing the CDM Programs themselves,
18	particularly important given the concerns	18	what we have seen is that the enchantment of
19	about capacity needs in the future. You	19	CDM Programs would be significantly-it's a
20	know, we note that it is better to do	20	significant bump up in your CDM activity is
21	electrification as opposed to just maximize	21	what we would be recommending. The
22	the exports sales, but at the same time,	22	development of those programs, it's full of
23	there's significant value in increasing	23	a lot of detail. Essentially CDM Programs
24	those export sales. Essentially, the peak-	24	in part can help to address inequities that
25	shaving benefit of CDM helps to pay for most	25	otherwise arise. You know, in a large part,

	$\text { Page } 65$			$\text { Page } 67$
1	the CDM Programs exist because of the market	1		today where I think, as we work through this
2	barriers that in place for people doing	2		over the next, certainly the next decade,
3	energy efficiency on their own. Otherwise	3		the area that you've looked at more closely,
4	all of this stuff would just be done. So,	4		we're going to need to understand better.
5	you know, in a way, you look carefully at	5		Those three, electric vehicles, the dynamics
6	how those programs can help to transform the	6		around the heat pump phenomenon that we're
7	market, and at the same time provide, in	7		seeing and how important that's going to be,
8	particular for customers who have less	8		and also some rate design implications of
9	access to capital, addressing inequities	9		CDM. If I could start with electric
10	that might otherwise - that have already begun	10		vehicles, Ms. Sheppard, if you could perhaps
11	to show up because most likely the heat pump	11		turn to page 45 of your September 30 report?
12	installations that have already occurred are	12		And there's a table there, Table 14. And
13	not occurring at the level of the lowest	13		what I see there is the amount of stock in
14	income customers, for example, in the	14		the low scenario and the high scenario that
15	province. And then, certainly looking	15		you expect to occur for electric vehicles by
16	carefully at rate design approaches is going	16		2030 and there's a fair bit of variability
17	to continue to make a lot of sense.	17		there, one and a half percent and seven and
18	Certainly, an initial form of TOU pricing	18		a half percent. And I wonder if I can next
19	for EV load is sort of the easiest rate	19		take you to page 41? And there's a footnote
20	design policy to implement on a quicker	20		at the bottom of the page 43, and if you can
21	timeframe. And then, continuing to give	21		just scroll up, just a little, so we can see
22	careful attention to the monies that are	22		where the reference is through the footnote?
23	available federally and the provincial	23		Thank you. It says, "Synapse use
24	policies that support electrification and	24		Newfoundland's historical pre-29 electrical
25	increase energy efficiency would be	25		vehicle adoption rate to develop the early
	Page 66			Page 68
1	critically important. So, those are the	1		portion of the technology curve." The
2	four broad groupings of next steps that we	2		footnote is to an article which is
3	see.	3		interestingly called, "Looking For a Place
4	GREENE, Q.C.:	4		to Plug In". The reference in the article,
5	Q. Okay. Thank you, Panel. That concludes my	5		the article is about 18 months old, and it's
6	questions, Chair.	6		about the number of electric vehicles in the
7	CHAIR:	7		Province at the time and this was your
8	Q. Thank you, Ms. Greene. Mr. Young?	8		starting point, correct? I note that in the
9	YOUNG, Q.C.:	9		article it said there's roughly 500 hybrid
10	Q. Thank you, Madam Chair. Good morning,	10		vehicles and 122 full electric vehicles 18
11	Panel. My name is Jeff Young and I'm in-	11		months ago. Infancy, I would suggest to
12	house counsel for Newfoundland and Labrador	12		you. We've got a long way to go even to get
13	Hydro. Thank you very much for your report.	13		to your low-case factor of 10, in fact.
14	I think you'll probably agree with me that	14		HOPKINS:
15	there's a lot of information in there, but	15	A.	Yes, that's true, the market is very much in
16	more to the point perhaps is you've	16		its early stages here and that's what the
17	identified a number of areas where we need	17		low case is, you know, for Newfoundland to
18	still more information. Would you agree	18		lag five years behind the Canadian Federal
19	with that?	19		targets for adoption of EVs.
20	(10:15 a.m.)	20		NG, Q.C.:
21	MR. FAGAN:	21	Q.	Right, and it occurs to us that there might
22	A. Sure, of course. The reference questions	22		be a big of a "chicken and egg" question
23	bounded what it was that we were doing.	23		here. If you have no chargers, you will
24	YOUNG, Q.C.:	24		have no electric cars. If you had no
25	Q. Right. And I'd like to explore three areas	25		electric cars, you'll have no chargers. You

	Page 73			Page 75
1	if customers see it on their bill or	1		thing here for fueling a vehicle, however it
2	information from the utility that there's a	2		occurs. I want to turn now to heat pumps, I
3	time infused rate that's tailor made for	3		have some questions about that. Can we turn
4	electric service, that puts the idea in	4		to page 65 of the report please? And this
5	their heads. Have you observed that as a	5		chart is in your report; it's also in your
6	trend, though, when it's been introduced as	6		presentation, and you've discussed it
7	causing some sort of an uptake in electric	7		already to some extent and the point you
8	vehicles or can you take that out of the	8		raised is-a couple of points, I suppose, and
9	other noise of what's happening in the	9		I'll just make an opening comment, in this
10	marketplace.	10		particular place you sit today, St. John's,
11	DR. HOPKINS	11		it's a relatively temperate Canadian city,
12	A. I might ask Ms. Whited who has looked at	12		not without our cold snaps from time to
13	electric vehicle rates in California to	13		time. Five years ago we had a doozy which
14	answer that one.	14		you can Google or you can talk to Liberty
15	MS. WHITED:	15		about it, they'll tell you, but what I see
16	A. I don't think that we've been able to tease	16		here is, as you've remarked, around the zero
17	that out, but it is, you know, California	17		mark and even down to minus 10 , fairly flat,
18	has taken approach that they want to ensure	18		the coefficient, the advantage of the
19	that rates are available that make electric	19		technology over resistance heat is quite
20	vehicle fueling as cost effective or the	20		solid, it's two and a half times.
21	same costs are lower relative to fueling	21		OPKINS:
22	with gasoline and so, for that reason, you	22	A.	Right.
23	know, they have really pursued lower rates	23		NG, Q.C.:
24	for electric vehicles than you might	24	Q.	And it trends down to one and a half times
25	otherwise see.	25		at minus-it looks like minus 23. I'm just
	Page 74			Page 76
1	YOUNG, Q.C.:	1		curious, is it linear if you extend it out
2	Q. Thank you. I just make that observation	2		further and went down, just say if you
3	because I can see how nicely it works to	3		looked at a number, like minus 27 or
4	avoid suppertime peak, as you've just	4		something, just curious.
5	described a few minutes ago. So, if for no	5		OPKINS:
6	other reason, we do it for that reason, I	6	A.	I haven't seen actual measured data. If it
7	think, or certainly look at it for that	7		goes down that far, some heat pumps have
8	rea	8		minimal temperatures at which they operate.
9	MS. WHITED:	9		One of the other things that is going on is
10	A. I could add one additional point is that the	10		that the capacity of a heat pump to the
11	cost effectiveness of electric vehicles	11		amount of heat that it can deliver tends to
12	depends a lot on the gasoline price, you	12		also be falling as the temperature goes down
13	know, what the alternative would be, and we	13		and so, that's part of the reason you would
14	know that gasoline prices are volatile, so	14		imagine that folks would keep their electric
15	providing an electric vehicle rate or a time	15		resistance heaters, if they have them and
16	of use rate when you know that you can	16		perhaps also the oil heat in al
17	charge during off-peak hours gives you some	17		electrification context and to be able to
18	insulation from that volatility of gasoline	18		make sure that they simply can deliver it.
19	prices so that you're more assured of	19		The amount of heat that the building
20	actually being able to see those savings,	20		requires as it goes up as it gets colder,
21	regardless of what the gasoline price is.	21		the amount that a heat pump system, which an
22	YOUNG, Q.C.:	22		air source heat pump system can provide is
23	Q. I'm just thinking about the way people line	23		falling as it gets colder and there's some
24	up at the pumps here when gas is supposed to	24		cost overplay when you need some sort of
25	go up, a response to a pricing was a real	25		other heat in the building. Now, it may be

1 that that cost over point is only Page 77
experienced for two or three hours and if your heating system can't quite keep up for two or three hours, so the temperature in your space falls by a degree or two and then you recover and that's fine, but generally speaking there's a lot of different kinds of things pulling in different directions at the low end of that range. My understanding is the so-called design temperature here in St. John's is in the range of minus 20 or so11 and that's a temperature at which the heat pumps are still performing quite well.
YOUNG, Q.C.:
Q. I would suggest to you it's more true of St. John's than other parts of the island and certainly the Province as your research in Labrador shows.
DR. HOPKINS:
A. Yes, that's true.

YOUNG, Q.C.:
Q. I wonder if we could see page 66 , please?
see a fairly healthy uptake here. This is, I believe this is Newfoundland Power's

		Page 78
1	customers and so by 2018, 18 percent of	1
2	electric heat customers had heat pumps and	2
3	the point you raised about the two different	3
4	types of heating systems is what I want to	4
5	understand a little bit better. As you've	5
6	pointed out in your report, the vast	6
7	majority and it's clear from this, the vast	7
8	majority of heat pumps that people have	8
9	installed here are the mini-split types, the	9
10	ones that sort we see fairly commonly hung	10
11	on the walls here in homes. At the bottom	11
12	of the page there's a comment there, you	12
13	say, I'm going to put words in your mouth, I	13
14	know it's dangerous, last week someone got	14
15	accused of treason for doing that, but you	15
16	say essentially that to understand the	16
17	effect of heat pumps you have to understand	17
18	how they're used and I suggest to you that	18
19	makes sense. I don't know if you've	19
20	researched this particular-I'm going to give	20
21	you anecdote that I know from several	21
22	people, which I'm curious, I'll ask you to	22
23	respond to, there are people who had oil	23
24	furnaces and they installed heat pumps and	24
25	then they said they had to get the house	25

rewired to some degree for the heat pump and they realized that the oil furnace would be there as a supplemental heat, really, because most of their heat was coming from the heat pump systems they put in, so they converted their hot water radiation, oil fired furnace, to electric fired or electric fueled hot water radiation as a supplemental system. So in that scenario you've done-one of the things you are seeking to do, I suggest, you've electrified the customer, although this has already happened for these particular people, which will be a good thing for rate mitigation, but on the margin, they are not - when I say "on the margin", I mean at those very cold temperature days, their backup heat system, the conversation we had a moment ago, is not fossil fuel, it's electricity, it's
resistant heat, so what I'm curious about and I don't think we know enough about this yet and need to learn more is how that works with the peak hour, you know, those few hours in the year when it's very cold and peak use is high. I'm going to suggest to
you and ask you respond to it because I know you've looked at this fairly closely, with respect to heat pumps and not driving the peak, would the kind of scenario I talked about just now, where people are moving away from oil so that they call electric customers first, with a heat pump, are you concerned about how you can manipulate the peak with that scenario?
(10:30 a.m.)
DR. HOPKINS:
A. The electrification heat pump adoption discussion is looking at that type of situation in particular and in our electrification high case we imagine the folks not keeping their oil systems so that the case that's comparable to what you've just described, including the lower average coefficient of performance that comes at that coldest times. We didn't model in particular those folks switching over entirely to electric resistance backup, I would say that one of the things that might come in program design, when it comes to that, is trying to get systems to be sized

	Page 81		Page 83	
1	well and incorporated well into the other	1		a standard rate offered that you can switch
2	heating systems in their homes to mitigate	2		off of electricity when the temperature is
3	those peak effects to the extent that makes	3		below a certain level, they have an outside
4	sense, that could come in the form of	4		temperature sensor and whenever it's below,
5	incentives, rates, other things. That's	5		you know, minus ten or whatever, it switches
6	getting into details further than we went in	6		over. So we modelled that kind of case in
7	our analysis, but we did look at that	7		the low case, so I think there are a lot of
8	electrification case and the potential peak	8		different options with respect to the
9	impacts of folks not keeping their oil	9		hardware that customer keep in their homes
10	system at all.	10		and whether it's an incentive structure or
11	MR. FAGAN:	11		rate structure that would be intended to try
12	A. And let me just supplement that, it is our	12		to get the most system benefit, while also
3	understanding that Newfoundland Power is	13		making economic sense for the customers.
14	conducting load research studies. Those are	14		AGAN:
15	critically important studies. I mean, for	15	A.	And as a compliment to what Dr. Hopkins has
16	example, part of what those studies will do	16		talked about, we did model the critical peak
17	is help us determine to what extent is the	17		pricing effect also which can have an effect
18	anecdote that you described common or	18		on any peak use essentially, but certainly
19	uncommon, but just getting a better handle	19		to the extent that that type of a rate
20	on all of that gives us a better	20		structure was in place. That goes a long
21	understanding of what type of peak	21		ways towards mitigating whatever the effects
22	reductions, for example, you could	22		may be, regardless of the policies you have
23	reasonable predict or model. So that type	23		in place around electrification and
24	of analysis is important. Lack of that data	24		incentives to retain oil.
25	doesn't reduce the overall effect of our	25		G, Q.C.:
	Page 82			Page 84
1	findings, the importance of these patters,	1	Q.	Can we turn to page 125 of the report
2	but that will be critical to help shape the	2		because I understand this one better, to
3	type of policies that you may want to have	3		some extent your answer addressed this, but
4	in place to help minimize instances where	4		the second bullet there on the page refers
5	peak load increases. You know, we do model	5		to the information from the Dunsky Report
6	peak load increases associated with	6		and it talks about the mini-split heat pump
7	electrification from an oil heated, the oil	7		systems complementing but not replacing oil-
8	heated buildings.	8		heat systems as economic. So I'm just
9	OUNG, Q.C.:	9		curious, perhaps you can discuss this
10	Q. So just further to that, the tools you would	10		because I'm curious what the customer would
11	use once we have this, and I'm thinking five	11		feel about that reference. Does the term
12	or six years out now, would it be a critical	12		"economic" in that sentence, does it refer
13	peak pricing means of trying to address the	13		to the overall or is that by a customer
14	peak or is there another means?	14		basis what makes sense?
15	DR. HOPKINS:	15		OPKINS:
16	A. I'll draw an example, so in the low	16	A.	I guess the "economic" there is being
17	electrification case we modelled a case in	17		credited to Dunsky and I don't remember
18	which folks were offered an additional	18		exactly how they were framing that.
19	incentive to keep their oil system and to	19		VG, Q.C.:
20	have the systems be interacted, rather than	20	Q.	Fair enough, but the point you raised about,
21	necessarily to switch to resistance and in	21		with the Quebec example a moment ago, is
22	that case to actually have folks keep the	22		that one thing that possibly could be done
23	system they have and use it when it's below	23		is to make it economic for customers.
24	a certain temperature. So for example,	24		OPKINS:
25	Hydro Quebec has a duel fuel rate, it's just	25	A.	Right, looking at the actual customer

	Page 85			Page 87
1	economics of, example homes where they are,	1	Q.	Right, thank you. Move on now to, well I'm
2	you know, how systems might integrate well,	2		calling it CDM and rate design, I'd like to
3	you know, mini-split systems tend to be good	3		explore this a little further. I wonder if
4	complements to radiator based systems and	4		we could look at the chart on page 7? It's
5	so, being able to displace some large	5		in your presentation also, but I'm more
6	fraction of oil use for when times when	6		familiar with your report, page 7 of your
7	it's, you know, cold but not as cold, or in	7		report. It's Table 1 on page 7. This chart
8	the most commonly used portions of the home,	8		is full of information, this is an excellent
9	for example, you might put a single head in	9		summary chart. If some people, if they read
10	a large open living space and you use that	10		nothing else and they read this, I think
11	to heat the home most of the time, except	11		they'd glean all from it, but there still
12	when you have guests and you turn the heat	12		might be some other important information to
13	on in the back of the house, so you know,	13		understand here. And just so that we can
14	whenever the other kind of situations might	14		understand it, if we took just the first row
15	arise. Houses are all unique; everybody's	15		across, which is No. 6, the high CDM case
16	house has its own characteristics, but I	16		which I understand was there as part of the
17	think this is getting into the details of	17		research, it's not necessarily what you're
18	the kind of program design that would be	18		proposing or suggesting, but just so we
19	reasonable to do when you're thinking about	19		understand it what we see is a fairly high
20	trying to actually figure out how to make	20		rate increase, well a cent and a half less,
21	something like this happen in practice for	21		one point four cents from that scenario and
22	customers.	22		we see a revenue drop and corresponding
23	OUNG, Q.C.:	23		total energy's expenditures drop in the
24	Q. Thank you. So what I gather from what you	24		third last column there, correct?
25	just said and what was said a little bit	25		OPKINS:
	Page 86			Page 88
1	earlier is that you have a fairly delegate	1	A.	That's right.
2	balance to make here, you're trying to	2		G, Q.C.:
3	electrify, you're trying to get perhaps more	3		So what we're seeing there is a fairly high
4	heat pumps in the system, but you are	4		response to CDM which drives down the total
5	concerned about the peak because that drives	5		energy which because the costs are fixed
6	capital costs. So it's the program design	6		largely, not much from the incremental
7	you referred to, I think and you can confirm	7		production cost, the rate has to go up to
8	that or otherwise, which rolls that out, if	8		capture the difference, the unit rate.
9	I can put it that way, to make sure that you	9		AGAN:
10	don't drive the peak with the hard -	10	A.	That's correct, the rate goes up, overall
11	DR. HOPKINS:	11		consumption goes down, the level of export
12	A. I would say that's a fair characterization	12		revenues shown on the complementing Table 2
13	of the kind of balance that you're trying to	13		goes up in this scenario and then that gives
14	strike and there's a number of different	14		you the overall utility effects.
15	kinds of levers, whether you call them	15		G, Q.C.:
16	programs or call them rates or call the	16	Q.	The other thing that happens is that in
17	policies, that you might pull on to try to	17		scenario is some customers, even though
18	reach for some combination that makes sense	18		they're paying higher rates, you were
19	for the electric system, makes sense for	19		explaining earlier they could have lower
20	family budgets, makes sense for the profits,	20		bills.
21	makes sense for decarbonization, objectives	21		AGAN:
22	that make - yeah, there's a lot of different	22		I'm sorry, could you repeat that?
23	things that might be pulling on the designs	23		G, Q.C.:
24	of those systems.	24	Q.	Yes, I certainly can. I think you said
25	YOUNG, Q.C.:	25		earlier that some customers, even with

1 higher rates if they were able to Page 89
participate fully in the CDM, they might
actually have lower overall bills.
MR. FAGAN:
A. Yes, that's exactly what this shows, the
average customer. What this doesn't show is
the distribution of bill effect across all
the different customer types.
YOUNG, Q.C.:
Q. Right, and that's the point I want to
explore a little bit because in this room
all kinds of customers are represented,
different classes and even within classes
you'll get differences amongst customers.
So the other one that I found very
interesting and we talked about this already
this morning, you've talked about it, is 12A
which shows a rate decrease and also lower
average costs.
MR. FAGAN:
Yes.
A.
YOUNG, Q.C.:
Q. So my question is, it's a fairly simple one,
when you're pursuing the rate design that
might work best and the, I suppose the suite
we're seeing in the high CDM case, for example, which highlights this because it doesn't look at electrification, is that rates do indeed go up, but the average bills do indeed go down because consumption is dropping significantly so, and what a more careful look at program design would do would begin to tease out what's fair. Who is going to see their consumption drop and why, and what can you do to ensure that all rate payers have access to the economic improvements so that the benefits associated with this average bill decrease can be distributed across as much of the customer base as is possible. Absent the CDM programs to the extent that you have a price response affect, those who don't have access to the CDM programs are going to see the higher rates and no means to mitigate their consumption, other than straight up customer behaviour turning the thermostat down, for example. But I think if it is a complex CDM program design task to look carefully at how the CDM programs can address the inequities that otherwise are going to occur. Now you
Page 92
talked about 12A and you talked about 6,
those are sort of the opposite ends of
spectrum here. I mean, 12A excludes CDM
effects and clearly shows net benefits. 6
excluded any electrification and shows on
average net bill benefits, but rate
increases.
YOUNG, Q.C.:
Q. Yes, that's right and I did indeed choose
those two ends of the spectrum to show the
point, yes.
MR. FAGAN:
Aight, and I would just further leave you to
look at the combinations because the
combinations is all we recommend, that you
need both, that clearly electrification is
somewhat obvious, to the extent that you can
electrify, you increase the kilowatt hours
sold, but the critical importance of CDM
comes in primarily on its capacity value,
but at the same time it allows you to sell
additional and it helps those customers who
have no-it helps customers with their bills
because it reduces there consumption and
people pay the bills. They are exposed to

of options you have, which is not just rate 90
design, it's also electrification and things
of that nature, some of which can be done
through rate design, but other programs and
incentives can occur, would you-and I don't
know if your research has gone this far,
would you look at using screening tests to
decide which programs to use and I know you
know more about this than I do, but it would
be the rate impact tests, the RIM test or
something of that nature, would that be then
overlaid upon this analysis to come to what
might be seen to be more fair, which is you
wouldn't want a particular kind of customer
to bear a lot of the burden and pay higher
rates, perhaps and have higher bills,
because they can't participate in the CDM.
MR. FAGAN:
Multiple parts to that question. You
certainly can use screening tests. We would
not recommend the rate impact measure test
to be the primary screening test; we
recommend a utility cost test and perhaps a
total resource cost test to check that. The
last part of your question, I mean, what

DR. HOPKINS:		Page
A. So what 29,613 kilowatt hours corresponds to	2	
e amount of heat to be delivered into	3	R. HOPKINS:
the living space in the building and	4	A. I'd have to go back through and check all
given the seasonal average coefficient	5	the math there, but yes, generally speaking
performance you require substantially le	6	if the amount of heat demanded in a
kilowatt hours to deliver that much heat	7	household is a substantially less than the
because you're simply moving the heat from	8	savings from the heat pump is also that much
outside to inside.	9	less.
MR. O'BRIEN:	10	R. O'BRIEN:
Q. So essentially you divide your 29,000 by your coefficient of performance, which I	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	Q. Okay, so would you have had that information from Newfoundland Power in terms of the
think was 2.75, is that right?	13	average heat usage for an average household?
DR. HOPKINS:	14	DR. HOPKINS:
A. 2.75 .	15	A. I don't remember whether we had that
MR. O'BRIEN:	16	particular piece, given that the analysis we
Q. And you come down with your 10,000 . So that sort of gives you an 18,000 and change	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	were doing in this case was for oil heating homes -
owatt hour savings, is that right, is	19	O'BRIEN
that how that works or -	20	Q. For oil, yeah
DR. HOPKINS:	21	DR. HOPKINS:
A. If the home were heated with electre	22	A. - your average residence that heats with
resistance heat, it would in fact demand	23	ricity is not necessarily the same as
29,613 kilowatt hours so that the savings	24	ur average residence that heats with oil,
from going from resistance to heat pump is	25	and so we built from the oil data, rather
Page 102		Page 104
that 18,000 or some difference.	1	than from electric data.
MR. O'BRIEN:	2	MR. O'BRIEN:
Q. Yes, and that 29,000, where did you come up	3	Q. Okay, so the oil data would be different
with that figure?	4	than someone moving from base heating to
DR. HOPKINS:	5	sort of a heat pump scenario?
A. So that's based on, I'm trying to rememb	6	DR. HOPKINS:
back, but I think basically we	7	A. Right.
total oil use and total number of oil heated	8	MR. O'BRIEN:
households to figure out how much oil those	9	Q. And maybe this is a good time to take a
households are using on average, that	10	break, Madam Chair?
corresponds to a certain amount of energy,	11	HAIR:
as a efficiency of an oil system to deliver	12	Q. Do you have any further question
that heat into the space and so it's	13	MR. O'BRIEN:
effectively equivalent to the oil use h	14	Q. I have, I
delivered into the space. How do I deliver	15	questions.
just as much heat with electricity?	16	CHAIR:
MR. O'BRIEN:	17	Q. Okay, won't hold you to it, just want to
Q. Okay. And I'm going-and just in terms of	18	make sure.
comparison, I'm being told that from	19	MR. O'BRIEN:
Newfoundland Power's records the average	20	Q. Okay.
household would have 23,000 in total	21	CHAIR:
electric use and of that about 55 percent of	22	Q. I just need to know who to go to, that's
that would actually be heat. So that	23	all.
figure, in comparison from electric use	24	MR. O'BRIEN:
would be around 13,500 verses your 29,000,	25	Q. Okay.

	Page 105	Page 107		
1	(OFF RECORD - 10:58 A.M.)	1	MS. WHITE:	
2	(RECONVENED 11:31 A.M.)	2	A.	It could if your peak hours or if your peak window is too short so that you simply shift
3	CHAIR:	3		
4	Q. Thank you. Back to you, Mr. O'Brien.	4		the peak to a different hour. If you can
5	MR. O'BRIEN:	5		shift it into enough of a trough, then you
6	Q. Thank you, Madam Chair. Just one more	6		don't actually create a new peak, just at a
7	question, folks, on this Table 76, the heat	7		different hour.
8	pump loan I guess that you've got indicated	8	MR. O'BRIEN:	
9	there, the five years, am I right in	9		Okay, so that's something for rate design to
10	assuming then that your upfront cost assumes	10		have a look at in terms of -
11	or I guess your analysis assumes that the	11	MS. WHITE:	
12	upfront cost of the heat pump will be paid	12	A. Absolutely.	
13	off over a five-year term, is that right?	13	R. O'BRIEN:	
14	DR. HOPKINS:	14	Q.	And just one more question really with respect to time of use rates and critical
15	A. Right.	15		
16	MR. O'BRIEN:	16		peak pricing, did you consider that in terms
17	Q. Okay, so the initial savings you wouldn't	17		of other demand responses, such as, I guess,
18	see until the end of the five years, you'd	18		curtailment and how that would work?
19	see a jump in savings for customers.	19	MS. WHITE:	
20	DR. HOPKINS:	20	A.	Yes, so we assumed that demand response through, say, direct load control, would be
21	A. That figure on the slide shows that's five	21		
22	years of and then it jumps up -	22		through, say, direct load control, would be an alternative to doing time of use rates
23	MR. O'BRIEN:	23		with critical peak pricing. We expect that if you already have demand response programs
24	Q. And just shows that increase on the slide.	24		
25	DR. HOPKINS:	25		to that effect in price, that there will be
	Page 106			Page 108
1	A. - and then it jumps up when you take off the	1		much less load available to shift through
2	system.	2		critical peak pricing, so it's a bit of an
3	MR. O'BRIEN:	3		"either/or" proposition.
4	Q. Okay. Just one last area and that's with	4		'BRIEN:
5	respect to the time of use and critical peak	5	Q.	Okay. All right, those are all my
6	pricing rate design. Newfoundland Power's-I	6		questions, Madam Chair.
7	understand Newfoundland Power's load shape	7		
8	is relatively flat and when I say that, I	8	Q.	Thank you, Mr. O'Brien. Consumer Advocate?
9	understand it's over sort of, there's about	9		ITZGERALD:
10	14 hours of the day where it's within 10	10	Q.	Thank you, Madam Chair. Good morning,
11	percent of peak, would that make an effect-	11		panel. My name is Stephen Fitzgerald
12	would you see just a movement of peak then	12		representing the Consumer Advocate. Just a
13	if you looked at rate design for time of use	13		couple of questions. An overall question at
14	and critical-I guess for time of use design,	14		page 10, arises from page 10 of your
15	would that change your analysis?	15		September 3rd report, if you could go to
16	MS. WHITED:	16		that, and this is, the way it's articulated
17	A. It's definitely important to have the peak	17		it's difficult, it's a difficult issue, of
18	periods long enough so that you don't simply	18		course, the way you articulate and say
19	shift the peak to a different hour.	19		"revenue changes", I'm looking at the third
20	MR. O'BRIEN:	20		bullet at page 10, "Revenue changes from CDM
21	Q. Right, okay. So that may have an effect as	21		load reduction electrification. A critical
22	to whether or not, I guess, defeats the	22		tension running through our analysis from
23	purpose of the time of use of looking to	23		the perspective of the utility system is a
24	shift peak if it's already kind of shifted,	24		net effect of increasing revenues through
25	is that fair?	25		electrification while losing revenue due to

	Page 109		Page 111	
1	increased conservation and efficiency."	1		with electricity end uses in further areas
2	This seems like the paradox that we're	2		that we model for the transport sector and
3	struggling with, from a consumer's	3		for the heating sector.
4	perspective, in lay terms, is there another	4		FITZGERALD:
5	way to express that or what exactly is the	5	Q	Okay. In your conclusions, I don't know if
6	critical tension? What are the consumers to	6		this is fair to ask this or not, but do you
7	do, electrify or conserve?	7		think that there may have been a bias
8	MR. FAGAN:	8		against oil in your promotion of
9	A. The short answer is both, and I don't mean	9		electrification?
10	that flippantly. Electrification replaces	10		FAGAN:
11	oil end uses with more economic overall use	11	A.	Sorry, could you repeat that question.
12	of electricity. CDM at the same time allows	12		FITZGERALD:
13	you to most efficiently use the electricity	13	Q.	You know, are we comfortable, can we be
14	for the end uses that you need; and in	14		comfortable that in your presentation to the
15	particular, it also helps during peak	15		Board that there was no inherent bias
16	periods of time to reduce the overall peak	16		against the oil industry, if you will, and
17	load. So the overall aim would be for the	17		that the electrification solution that
18	electrification increases in load to occur	18		you're advancing is actually the most
19	more during off-peak hours than during on-	19		logical?
20	peak hours, and for the CDM improvements to	20		FAGAN:
21	have a significant impact on peak load while	21	A.	Oh yeah, that's straight up economics, this
22	simultaneously there will be off-peak energy	22		just shows what's the least expensive way to
23	savings associated with CDM and export sales	23		get the services that either oil provides
24	will also be increased for all energy	24		for transport or electricity, that either
25	savings that arise from CDM. So the short	25		oil provides for heating or electricity and
	Page 110			Page 112
1	answer is yes, both of those things should	1		then it's a straight up technical and
2	occur; different mitigation effects arise	2		economic analysis comparing the two fuels.
3	from each of them.	3		ITZGERALD:
4	MR. FITZGERALD:	4	Q.	In your analysis and in your presentation
5	Q. Well which is so different effects but the	5		was there any consideration given to, you
6	combination provides them most effect, is	6		know, the fact that Nalcor itself, I guess,
7	that -	7		is partially an oil-based company, our
8	MR. FAGAN:	8		economy in Newfoundland has been somewhat
9	A. Yes.	9		reliant on that industry in the recent past,
10	MR. FITZGERALD:	10		was there any consideration of this, you
11	Q. Okay, so but from the consumers-or are you	11		mentioned the new money that's saved by not
12	suggesting that the Provincial Government	12		burning oil, if you will, was there any sort
13	policy should be electrification or is this	13		of macroeconomic view of the best interest
14	a message to consumers that they should take	14		of the Province whether the electrification
15	steps now in the looming Muskrat Falls era	15		could impact on the oil industry at all?
16	to electrify?	16		AGAN:
17	MR. FAGAN:	17	A.	We did not do a macroeconomic analysis. A
18	A. The message of our report to the Board and	18		macroeconomic analysis could look at that
19	to the government and to stakeholders, is	19		and if we were to do that, at the same time
20	that the combination of both of those things	20		you would also want to look at the effect of
21	is important. The message to consumers,	21		the electrification in the CDM for example,
22	individual consumers, is always use	22		and the macroeconomic effects that those
23	electricity more efficiently if you can, and	23		things would have, coupled with whatever
24	in this case you can end up with a better	24		macroeconomic effects might occur from a
25	economic outcome for replacing oil end uses	25		reduction in the use of oil.

	Page 117			Page 119
	MR. FITZGERALD:	1	MR. FAGAN:	
2	Okay, subject, of course, to the vagaries of	2	A.	Well, as our report indicates, we think the
3	forecast, as they go ten years, of course we	3		best outcomes are to electrify up here and
4	recognize that they're probably not as	4		use the energy internally, absolutely. You
5	accurate as our near term forecast, in a	5		can get greater average revenue by doing
6	general sense.	6		that up here, but what's left over should be
7	. FAGAN:	7		sold. You can't store it, the facilities
8	A. Subject to the forecast price, certainly.	8		are just about built, so you have no choice
9	MR. FITZGERALD:	9		but to export it.
10	Q. So we note that one of the advantages that	10		FITZGERALD:
11	you've mentioned for CDM, of course, is to	11	Q.	Sure, of course. At page 129 of your
12	free up electricity for export. I believe	12		report, September 3rd, just the advanced
13	that's one of the underpinnings of the CDM	13		metering infrastructure reference there in
14	initiative?	14		paragraph 7. And here you stated that the
15	MR. FAGAN:	15		broad use of AMI to more fully implement
16	A. Yes, I would-that's important, the CDM	16		marginal cost based pricing across all
17	effect on shaving peak, it's probably more	17		customers does not appear as economically
18	important when you look at the benefits of	18		attractive. Why is that? What were your
19	CDM, sizeable, a greater amount of those	19		findings there?
20	benefits accrue from the peak shaving value	20		WHITED:
21	of the CDM.	21	A.	Simply that the cost of implementing
22	MR. FITZGERALD:	22		advanced metering infrastructure is still
23	Q. With the low price, relatively low price and	23		fairly high. We estimated approximately
24	I suppose that's a leading question whether	24		\$300.00 all in per meter and the benefits in
25	it's a low price or not, but would you agree	25		jurisdictions that typically implement AMI
	Page 118			Page 120
1	that the 3.5 percent or 3.5 cents a kilowatt	1		often include large meter reading savings.
2	hour is a relatively low cost for-or price	2		We understand that Newfoundland has recently
3	for energy?	3		implemented automated meter reading, AMR,
4	MR. FAGAN:	4		and so there are fewer benefits on that end.
5	A. It's a relative term. 3.5 percent is	5		So that's something that needs to be taken
6	relatively low compared to 10 percent and	6		into effect, whether the other benefits that
7	3.5 percent is relatively high compared to	7		AMI might provide and in the absence of
8	2.5 cents.	8		those meter reading savings, may make it
9	(11:45 a.m.)	9		less economically attractive then in other
10	MR. FITZGERALD:	10		jurisdictions where those are available.
11	Q. Sure, but historically speaking, though, in	11		ITZGERALD:
12	your experience, the current market and you	12	Q.	Okay. Alternatives to AMI, had Synapse
13	mentioned this morning I think the	13		considered the implementation or the
14	northeastern United States, is that	14		recommendation for seasonal rates, would
15	generally a low price these days and has	15		that be a method of achieving rate
16	been historically?	16		mitigation?
17	MR. FAGAN:	17		HITED:
18	A. Yeah, the average wholesale prices have	18	A.	Seasonal rates with, for example, higher
19	definitely been trending down because of the	19		prices in the winter verses lower prices in
20	effect of natural gas prices in the US.	20		the summer are possible, but there's not
21	MR. FITZGERALD:	21		much shifting of load that you can do from
22	Q. So I guess the question would be, then, you	22		the winter to the summer, and so, for that
23	know, why is there a push, if you will, to	23		reason, you know, the average rate is not
24	sell or to export energy at such a low price	24		going to change, it's not going to provide
25	when it can be purchased here?	25		much mitigation benefit.

	Page 125	Page 127		
1	it, perhaps we could turn to it, Figure 53	1	Q.	And in short, why is it important to, if not
2	of your report. I think it's about page	2		have an absolute maximization of utility
3	119. Page number may have changed with the	3		revenues, to keep them relatively high? Why
4	revision.	4		was that part of your analysis?
5	Am I right in saying that you are	5		AGAN:
6	advocating for directionally the options	6	A	It's important from a mitigation
7	that are at the right end of that table or	7		perspective. From a rate mitigation
8	that figure?	8		perspective that's important. From a bill
9	MR. FAGAN:	9		mitigation perspective, the combination is
10	A. Advocate is a strong word. We do recommend	10		important.
11	that the Province look at the combinations	11		OXWORTHY:
12	of CDM and electrification because we think	12	Q.	So, it's important for both, for bill
13	those hold the biggest benefit. That Figure	13		mitigation to have relatively high utility
14	53 is one representation of putting all of	14		revenues? That's an important goal as well,
15	this together and seeing where things lie.	15		as much as reducing energy requirement,
16	So, I guess the short answer is yes, it's	16		absolute energy requirement?
17	our strong opinion that both of these	17		AGAN:
18	components are important and both of them	18	A.	Well, it's both of those things. You know,
19	are required in some form in order to lead	19		reducing consumption and for those areas
20	to the best outcome for rate payer.	20		where electrification can occur, displacing
21	MR. COXWORTHY:	21		oil with more efficient use of electricity
22	Q. And again, is it fair to say, looking at	22		for the end-use service needed, that's what
23	this figure, that at least part of the	23		gives customers the best outcome.
24	reason why you're strongly recommending the	24		OXWORTHY:
25	directional solutions, I'll call them, at	25	Q.	With reference, I started off by addressing
	Page 126			Page 128
1	that end is that they relatively maximize	1		your experience in other jurisdictions. Are
2	utility revenue and relatively minimize, in	2		you aware of any other jurisdictions that
3	fact absolutely minimize, energy	3		you've worked in where this type of
4	expenditures?	4		directional approach has been implemented?
5	MR. FAGAN:	5		The directional approach that appears in the
6	A. In short, it certainly indicates best	6		last five bars on Figure 53.
7	customer outcomes on the right-hand side of	7		AGAN:
8	this graph. It's not quite the maximum	8	A.	Maybe I'll let you answer that. I mean,
9	utility revenues, but it's close.	9		there's many jurisdictions where both
10	MR. COXWORTHY:	10		electrification and energy efficiency have
11	Q. That's right. It gets you closer than some	11		been looked at together, perhaps not
12	of the other results, closer to maximizing	12		necessarily with this -
13	your utility revenues.	13		COXWORTHY:
14	MR. FAGAN:	14	Q.	I guess my first question was anywhere that
15	A. Well, I mean, you can see from this, the	15		it's actually been tried, not just looked
16	pure maximization of - well, I should be	16		at, but used, implemented for a period of
17	careful here. The maximization of utility	17		time.
18	revenues comes with the electrification only	18		OPKINS:
19	scenarios.	19	A.	I'll mention the US states of Vermont and
20	MR. COXWORTHY:	20		Massachusetts as examples. In the Vermont
21	Q. And -	21		case, there's a strong policy push towards
22	MR. FAGAN:	22		electrification. They have a lot of oil
23	A. The maximization of customer benefit comes	23		heat, so the economics of heat pumps are
24	from the combination.	24		relatively favourable. They're a ZEV state.
25	MR. COXWORTHY:	25		They're signed on to the California Zero

	Page 129		Page 131
1	Emission Vehicle policies towards electric	1	universal across all of the jurisdictions, I
2	vehicles. They're also among the states	2	think, in Canada and the United States and
3	that they have been recently ranked number	3	elsewhere in the world.
4	three in the US on electric energy	4	MR. COXWORTHY
5	efficiency. So, they're, you know, really	5	Q. So, one to one, you think the lessons that
6	pushing very hard on both of those	6	they're drawn from a jurisdiction like
7	directions.	7	California will apply in Newfoundland and
8	Massachusetts, number one on energy	8	Labrador? That's a reliable measure; that
9	efficiency in the US, has recently	9	the success that's been achieved in
10	implemented heat pump incentives through its	10	California can be expected here?
11	energy efficiency programs. Is also a ZEV	11	MR. FAGAN:
12	state; has electric vehicle incentives, et	12	A. They don't directly apply in the sense that
13	cetera. So, they're similarly pushing on	13	a lot of things are different. You know,
14	both the electrification and the energy	14	the dominant - you know, solar is - I mean,
15	efficiency side of the ledger.	15	California has a significant share of hydro
16	WHITED:	16	also, both its own hydro and imported
17	A. And I would add California as well.	17	hydroelectricity and they also have
18	DR. HOPKINS:	18	significant amount of both wind and solar.
19	A. Oh, right.	19	The demographics are different. It's a
20	MR. FAGAN:	20	summer peaking system, not a - although
21	A. Yeah, I mean, California, all three of these	21	parts of northern California are winter
22	components are in place in California.	22	peaking actually. So, there's a lot of
23	California has traditionally been one of the	23	differences. But what's more stark are the
24	leading energy efficiency states. They've	24	parallels and the analogs you can draw
25	had significant inroads, probably more so	25	because at a fundamental level, the
	Page 130		Page 132
1	than any other state, on electrification for	1	technologies, heat pump technologies and the
2	vehicles and they have been at the forefront	2	electric vehicle technologies and the
3	in rate design efforts over the years to try	3	regulatory impacts of smart rate design can
4	to get the right price signalling in place.	4	reap the benefits regardless of whether or
5	MR. COXWORTHY:	5	not it's California, North Dakota, Florida
6	Q. So, in California, is it rate design that's	6	or Newfoundland.
7	been coupled with electrification to achieve	7	(12:00 noon)
8	these results or is it CDM?	8	MR. COXWORTHY:
9	MR. FAGAN:	9	Q. All that you just mentioned, imported
10	A. It's all. California looks holistically at	10	electricity. One of the factors in
11	energy efficiency policies, at	11	California is their ability to import
12	electrification and electric vehicle	12	electricity and in fact, that's probably - I
13	policies and rate design across a whole	13	think that's probably true of all of the
14	plethora of proceedings in California. It's	14	examples you've just given, Vermont, Mass,
15	hard to keep them all straight. But they	15	they all have access, ready access to
16	look holistically at all of these elements.	16	imported electricity from outside of their
17	MR. COXWORTHY:	17	jurisdiction.
18	Q. California, in terms of the size of the	18	MR. FAGAN:
19	market, the issues that they face, load	19	A. Yeah, California certainly imports and
20	shapes, customer class, et cetera, is it	20	exports - they're net imported, but
21	comparable to Newfoundland and Labrador?	21	seasonally there are significant export
22	MR. FAGAN:	22	also. Sure, all jurisdictions are -
23	A. It's obviously different in many respects,	23	MR. COXWORTHY:
24	but at its core, electrification and energy	24	Q. And how important is that, the flexibility
25	efficiency and rate design is sort of	25	to be able to import electricity from other

	$\text { Page } 141$	Page 143		
1	flows overtime, given what's going on with	1		AGAN:
2	potential for a flatter load and given what	2		I mean, for example, the results of
3	the possibilities are for increased	3		Newfoundland Power's load research study,
4	electrification and reduced energy from CDM,	4		that would be really important to really
5	just putting that in one place is more than	5		help inform this. If you wanted to do some
6	scratching the surface. I would say that,	6		pilot programs to look more carefully at
7	you know, to use that same analogy, you	7		response to TOU, those things take time. So
8	know, perhaps - you know, beginning of Phase	8		I think that type of data collection would
9	1 , we were - and even into the conclusion of	9		be important to the accuracy of the finished
10	Phase 1, we were scratching the surface.	10		product, absolutely. Not to mention just,
11	So, the putting it together, the synthesis	11		you know, are you going to be good with the
12	involved in coming up with Table 1 and 2,	12		LIL over the next five years, over the next
13	for example, helps to shine a little bit of	13		two years, over the next ten years, and what
14	a more focused light on what the concerns	14		more will you know six months, eighteen
15	are and what the potential remedies are.	15		months down the line, and how might that
16	But diving down into the rate class and the	16		impact how important particular peak shaving
17	thorny issues of how you implement policy to	17		things are. You know, are there any
18	minimize inequities, that's the next step,	18		significant changes in export markets. We
19	and that's essentially what we laid out in	19		actually don't think that there will be. I
20	the series of next steps there that the	20		think it's more about what's happening
21	Province will need to tackle.	21		internally and what your load research may
22	MR. COXWORTHY:	22		tell you. That might be one of the more
23	Q. Synapse has been involved in this process	23		important pieces of data that would be
24	for the better part of a year to arrive at	24		useful to have to try to flush this out. I
25	the point you've arrived at. I think it's	25		mean, some of the rate design stuff is
	Page 142			Page 144
1	understood with good cooperation from Hydro,	1		somewhat academic, you can do it, but it's
2	Nalcor, Newfoundland Power, that the	2		all going to depend upon the type of data
3	information you've asked for has been	3		you have access to, to test how accurate the
4	provided. If you were to be tasked,	4		results actually are.
5	similarly resourced, with similar	5		COXWORTHY:
6	cooperation from Nalcor and Hydro, to take	6	Q.	If we could turn to page 39 of your
7	this analysis to its end point, to the end	7		presentation. Thank you, the table with the
8	point of digging down, drilling down into	8		CDM adoption rates of technologies, low and
9	class effects, to drilling down to what	9		high scenarios, and I wanted to ask some
10	actually is implementable, both reasonably	10		questions about the third band for the
11	and in terms of having some reasonable	11		island there, which I understand to be for
12	certainty, in terms of outcomes, how long	12		industrial customers.
13	would that take you? If it's taken you the	13		OPKINS:
14	better part of a year to get to where you	14	A.	Correct.
15	are now, how long would that take? Would it	15		COXWORTHY:
16	take another year, two years?	16		The IND?
17	MR. FAGAN:	17		OPKINS:
18	A. It would depend upon the specific scope,	18	A.	Yes.
19	certainly less than two years to begin to	19		COXWORTHY:
20	put this - you know, get to the next level	20	Q.	Yes, thank you, and I wanted to have your
21	of focus. It's hard for me to put a number	21		comment on how you've arrived at the
22	on that. You can do a lot of work in a	22		projections of 14.5 percent for 2030 under
23	year.	23		the base case, and 25.8 percent under the
24	MR. COXWORTHY:	24		low rate case, and 40.1 percent for the high
25	Q. But you're saying perhaps two years?	25		case by 2030 ?

DR. HOPKINS:
A. Just to make sure we're on the same page, what's showing here, this is the accumulative adoption rates for CDM measures on average by those dates starting from 2019, and so in the base case, we basically assumed that programs continue as they are.
MR. COXWORTHY:
Q. Existing programs for industrial customers?

DR. HOPKINS:
A. The existing programs, so the 1.3 is the current level of performance, as I understand it. So if that were to continue for eleven years, that's 14.5. If
participation rates and adoption rates of CDM measures were to increase gradually over time, then the cumulative of that you get over time is somewhat higher.
MR. COXWORTHY:
Q. And are these the same existing measures, or are you assuming there'll be new measures for the low case?
(12:15 p.m.)
DR. HOPKINS:
A. If you go back to the previous slide, \quad Page 146
there's a list of measures that we looked at. Industrial end uses identified here, so motors, compressors, pumps, fans, process, energy use, HVAC, lighting and other, and so for each of those looked at adoption rates. Where adoption rates are relatively high now, the relative increase is smaller. Where adoption rates have been relatively low, the relative increase is higher, but, yeah, we looked at each of those end uses and the potential in those areas, and what plausible paths forward might be for increasing uptake relative to the, sort of usual base case.
MR. COXWORTHY:
Q. It's not clear to me, and perhaps it's my fault, but is the low case for 2030 based on existing $=$ extrapolating take up of existing CDM programs that Hydro is offering to its industrial customers?
DR. HOPKINS:
A. The existing programs, I'm not sure whether it's limited only Hydro's in the sense that there are some industrial customers, smaller ones, served by Newfoundland Power, but the 25

Page 145
suite of measures is the ones listed on the previous slide. Generally industrial energy efficiency tends to be lumpy, come in large chunks of reworking of a facility or reworking of a production line, or that sort of thing. So this is smoothed out and also industrial energy efficiency tends to be outcome focused rather than - we're dealing with, like, a large industrial facility, do not necessarily have a - it's commonly a custom approach to what that particular facility needs, whatever its particular blend of end uses are. So I think we were working more from a top down - sort of top down meets bottom up, what seems like a reasonable combination of what's possible in those measures, and recognizing that we're not actually in the particular facilities doing site assessments ourselves.
MR. FAGAN:
A. But the low is not just an extrapolation of existing programs. It's a small tweak in addition the existing programs.
DR. HOPKINS:
A. The same measures may be being adopted as in
existing programs, but at a more rapid click, recognizing perhaps somewhat larger incentives are the things that might be necessary to make those same kinds of things happen, but faster.

MR. COXWORTHY:

Q. You said something in the course of that answer, and I understood you to say, and correct me if I'm wrong, that within that industrial band there, there's perhaps included some Newfoundland Power customers. It's not what we - at least, I think of as industrial customers of Hydro. It's not strictly speaking just that industrial customer class that's included in that band?

DR. HOPKINS:

A. In terms of energy use, it's overwhelmingly dominated by the large customers. Whether on the margins - I'm just forgetting at the moment whether we looked at Newfoundland Power customers in that piece or not.
MR. COXWORTHY:
Q. So you don't know, or you can't tell us right now?
DR. HOPKINS:

	Page 153
1	their levels of economic production, but is
2	it typical that they're able to tailor their
3	operations to substantially reduce their
4	electricity consumption while maintaining
5	their levels of economic production,
6	whatever product they're producing? Is that
7	typical?
8	DR. HOPKINS:
9	A.
10	There are definitely process improvements,
11	particularly from my understanding, in motor
12	efficiency and pump efficiency using
13	variable speed drives and other things where
14	you're taking advantage of physics to try to
15	improve those pieces. There is a very
16	common intention, which you were
17	identifying, which is the need to maintain
18	output. You can't shut a production line
19	for a month to retool it to get a 1 percent
20	improvement. That doesn't make sense, and so
21	there's always those kinds of trade-offs
22	which is why the achievable potential is
23	usually substantially less than the
24	MR. COXWORTHY:
25	Q.

their levels of economic production, but is it typical that they're able to tailor their operations to substantially reduce their electricity consumption while maintaining their levels of economic production, whatever product they're producing? Is that typical?
DR. HOPKINS: particularly from my understanding, in motor efficiency and pump efficiency using variable speed drives and other things where you're taking advantage of physics to try to improve those pieces. There is a very common intention, which you were identifying, which is the need to maintain output. You can't shut a production line improvement. That doesn't make sense, and so there's always those kinds of trade-offs which is why the achievable potential is usually substantially less than the technical potential.
MR. COXWORTHY:

Page 154
achievable potential is usually less than what might be technically feasible or possible, again at page 39 of your presentation and the table there and the take up rates, is that what is technically possible or is it your assessment of what's practically achievable?

DR. HOPKINS:

A. So there are assumptions on what savings are achievable by end use on Table 17 on page 59
of the report. For example, for motors, compressors, pumps, fans, process, and HVAC, the potential there is 20 percent. So in the case where you have 40 percent uptake of a measure saving 20 percent, that's something like 8 percent overall saving in that end use, so we're taking what's technically possible in terms of - and achievable in this percentage savings piece and also modulating it by the fact that it takes time and an adoption may be slower or faster and thus the range of potential outcomes.
MR. COXWORTHY:
Q. So you're assuming you'll get there or you
should be able to get there eventually?
DR. HOPKINS:
A. If 20 percent savings are there and are cost effective, over time when you want a production line or a portion of the refinery or the pulp and paper facility is refit sometime over the course of years, that maybe you capture that opportunity. I mentioned the lumpiness of industrial efficiency acquisition previously. So it's a question of being ready and capturing those savings when you can find them and when they work for customers.
MR. COXWORTHY:
Q. Ms. Whited was speaking to rate design, and in the course of her evidence she talked about New England jurisdictions as being example where time of use and critical peak pricing has been implemented, those rates have been implemented and used. I think that's correct?
MS. WHITED:
A. I was speaking about - well, the time of use with critical peak pricing, they've have been implemented in many different
Page 156
jurisdictions. What we used to calibrate the type of response that we would see in Newfoundland were Ontario, Quebec, and the Pacific North West, specifically Portland Gas and Electric in Oregon.

MR. COXWORTHY:

Q. And so those are examples of jurisdictions where time of use and critical peak pricing has been used - had experience in using it?
MS. WHITED:
A. That's correct.

MR. COXWORTHY:
Q. And, I guess, I'd like you to comment on the experience of industrial customers in those jurisdictions in terms of do they take up time of use, critical peak pricing, is it different from what's implemented for other customer classes?
MS. WHITED:
A. Certainly time of use has been much more widely implemented for large CI customers than for residential customers across all the jurisdictions that I'm familiar with, and so often those time of use programs have been in place for many years and may be

A	0	111:18	136:14	64:16, 131:7,
Ability - 22:24,	Across - 3:11,	Advantage - 71:16,	Amortized - 25:7,	131:12, 139:2,
$40: 9,61: 21,132: 11$	7:22, 10:10, 22:10,	75:18, 114:16,	49:3	9:23
Able - 17:1, 25:19,	30:3, 32:13, 45:12,	121:11, 153:13	Amount - 12:3,	Applying - 100:23
41:6, 43:19, 63:1,	53:2, 53:6, 59:22,	Advantageous - 6 :	19:4, 44:8, $51: 17$	Appreciate - 100:4
70:21, 71:8, 73:16,	69:18, 87:15, 89:7, 91:14, 95:16,	19, 60:10 Advantag	$52: 25,53: 24,5$ $67: 13,76: 11,7$	Approach - 73:18,
74:20, 76:17, 85:5,	119:16, 130:13,	10	76:21, 101:3,	$128: 5,147: 11$
89:1, 132:25,	131:1, 135:7,	Advocate - 108:8,	102:11, 103:6,	Approaches - 32:1
135:15, 140:14,	135:13, 137:3,	108:12, 125:10	113:23, 117:19,	7, 65:16, 138:12,
140:24, 152:24,	138:2, 156:22	Advocating - 125:6	131:18	140:1
153:2, 155:1	Actions - 8:8,	, 133:2	Amounts - 31:10,	Appropriate - 13:5,
Above - 51:23,	15:12, 18:19	Affect -32:11,	40:21, 96:11, 115:7	28:7
56:12	Actively - 70:14	32:19, 40:10, 91:17	AMR - 120:3	Approximately - 1
Absence - 120:7	Activity - 64:20	Against - 111:8,	Analogous - 54:5	19:23
Absent - 91:15,	Actual - 12:12,	111:16, 122:19	Analogs -131:24	Area-2:9, 19:8,
137:20	38:8, 59:19, 76:6,	Aggregate - 45:10,	Analogy - 141:7	41:1, 41:18, 67:3,
Absolute - 16:25,	84:25	45:11, 45:24	Analyse - 135:15	106:4
17:6, 127:2, 127:16	Add-21:5, 24:16,	Aggressive - 25:8,	Analysis -6:17,	Areas - 6:12, 26:3,
Academic - 144:1	74:10, 129:17	25:11, 37:21, 55:1,	10:23, 11:25, 14:13,	66:17, 66:25, 111:1,
Accept -71:7,	Addition - 15:21,	138:13, 150:23	17:10, 20:19,	127:19, 137:14,
72:25, 93:7, 135:23	22:9, 29:3, 37:12,	Aggressively - 26 :	24:18, 26:7, 27:9,	46:11
Accepted - 63:18	147:23	25, 70:16	28:2, 29:16, 41:14,	Arise -64:25,
Acceptiveness -7	Additions - 22:1,	Aging - 93:17	41:20, 43:14, 48:7,	85:15, 109:25,
$2: 7$	22:3 -	Agree -66:14,	59:4, 59:19, 60:8,	110:2, 136:8
Access - 65:9,	Address - 8:24,	66:18, 95:6, 95:11,	60:17, 61:9, 62:3,	Arises - 8:16,
91:11, 91:17,	10:14, 25:17,	117:25	62:5, 63:10, 63:20,	108:14
132:15, 133:21,	64:24, 82:13, 91:24	Agreed - 94:12	81:7, 81:24, 90:12,	Arising - 8:6
144:3	Addressed - 84:3	Agreeing - 98:15	103:2, 103:16,	Arrive - 135:1,
Account - 12:14,	Addresses - 19:7	Agricultural - 4:14	105:11, 106:15,	141:24
20:7, 21:14, 34:10,	Addressing -65:9,	Aim - 99:19,	108:22, 112:2,	Arrived - 141:25,
40:8, 150:15	127:25	109:17	112:4, 112:17,	144:21
Accounting - 7:8,	Adds -51:21	Air - 76:22	112:18, 114:20,	ticle - 68:2, 68:4,
34:20	Adjourn - 159:10	AI - 76:16	123:11, 127:4,	8:5, 68:9
Accrue - 10:10,	Administration - 1	Allocate - 137:3	135:3, 137:6,	Articulate - 108:18
117:20	4:19	Allocation-32:14	140:7, 142:7,	Articulated - 108:1
Accumulative - 14	Adopt - 56:8	Allow - 26:12,	149:1, 150:9	
5:4	Adopted - 147:25	61:23, 62:10	Analyst-1:23	Arts - 4:14
Accuracy -143:9	Adoption-44:10,	Allowed - 29:9	Analyze - 6:14	Asa-2:25
Accurate - 59:25,	44:16, 44:21,	Allows - 26:15,	Anecdote - 78:21,	Aspects -2:2
117:5, 144:3	44:23, 48:17, 49:1,	40:21, 92:21,	81:18	Assessment - 151:
Accused - 78:15	49:10, 49:14, 50:9,	109:12	Annual - 5:18,	19, 154:6
Accustomed-123:	50:25, 56:16,	Alone - 57:6	14:19, 15:14,	Assessments -14
18	57:17, 67:25,	Alternative - 74:13,	54:17, 100:13	7:19
Achievable - 51:7,	68:19, 69:12, $70: 7$,	107:22, 114:12	Anticipation - 15:1	ssets - 53:22
150:15, 150:17,	$70: 14,80: 12$	Alternatively - 25:1	2	Assigning-18:12
150:21, 150:23,	100:5, 144:8,	6	Anywhere - 128:14	Associate - 4:1
153:21, 154:1,	145:4, 145:15,	Alternatives - 113:	Appear - 95:5,	sociate
154:7, 154:10,	146:5, 146:6,	5, 120:12	119:17	$7: 18,8: 14,16: 6,$
154:19	146:8, 149:8,	America-138:9,	Appears - 115:23,	
Achieve - 130:7,	150:5, 154:21	139:15	128:5	
133:4, 139:9,	Advance - 57:13,	AMI -63:11	Application - 10:4,	
149:25	98:13 - ${ }^{\text {Adi }}$	119:15, 119:25,	121:7	
Achieved - 51:18,	Advanced - 59:9	120:7, 120:12,	Applied - 4:15,	
131:9	59:16, 59:20, 70:8,	121:6	Applied - 4.15,	115:13
Achieving - 120:15	119:12, 119:22	Among - 129:2	Applies - 15:22	Association - 4:12
, 133:1 ${ }^{\text {Acquisition - 155:1 }}$	Advancing - 70:14,	Amongst-89:14,	Apply - 38:10,	Assumed - 43:7,

43:22, 44:5, 51:2,
59:21, 99:4,
107:20, 145:7
Assumption - 18:4 , 52:3, 57:6, 71:15, 99:10, 136:18, 136:24
Assumptions - 20: 25, 42:22, 49:10, 52:2, 60:12, 61:2, 99:2, 154:9
Assured - 74:19
Attach - 17:17
Attention - 65:22, 137:12
Attractive - 119:18, 120:9
Automated - 10:5,
120:3
Automatic - 10:1
Automatically -58:
12
Availability - 14:2, 19:19, 44:13,
152:18
Available - 8:18,
16:1, 16:19, 19:5, 20:4, 24:7, 27:7, 41:4, 44:15, 47:4, 52:17, 52:25, 53:9, 53:18, 53:23,
53:25, 54:18,
54:22, 65:23, 71:4, 73:19, 97:3, 108:1, 120:10
Average - 7:22, 15:14, 31:18, $31: 19,32: 4,33: 6$, 33:12, 51:10, 80:18, 89:6, 89:19, 91:4, 91:13, 92:6, 101:5, 102:10, 102:20, 103:13, 103:22, 103:24, 115:24, 118:18, 119:5, 120:23, 134:15, 134:16, 134:20, 134:22, 134:24, 135:1, 135:3, 135:16, 135:23, 136:19, 137:6, 145:5
Averages - 134:18 Avoid - 57:12, 59:1, 61:21, 69:14, 71:22, 74:4
Avoided - 48:11,

56:20
Avoids - 9:7
Aware - 93:11,
128:2
Aways - 61:8
Axis - 50:15
B

Back - 35:21, 38:3, 51:3, 85:13, 102:7, 103:4, 105:4,
133:18, 145:25,
152:16
Backend - 121:15,
121:17
Background - 1:14
, 2:4, 2:23
Backup - 79:17, 80:22, 99:5, 99:8, 114:14
Balance - 40:23, 46:20, 52:15, 86:2, 86:13
Balances - 7:3, 20:3
Balancing - 140:25
Band - 35:23,
35:24, 134:23,
134:24, 144:10,
148:10, 148:15
Barrier - 70:15
Barriers - 65:2,
69:14
Bars - 128:6
Base - 7:15, 12:23, 13:3, 30:17, 31:11, 37:2, 38:4, 48:14, 48:15, 51:16, 51:18, 52:2, 53:19, 54:16, 56:11, 91:15, 104:4, 134:9,
135:5, 144:23,
145:6, 146:14
Baseboard - 113:1 8
Based - 16:11,
25:7, 36:16, 36:17, 39:23, 46:14,
59:22, 61:2, 63:22, 85:4, 102:6, 112:7, 119:16, 123:5, 123:21, 124:5, 133:24, 146:17, 150:4, 150:10, 150:14, 150:20, 151:18
Basic - 20:2, 25:7,

116:16, 116:17
Basis - 10:7, 11:22, 21:7, 31:19, 84:14, 116:25, 122:22, 122:23
Bear - 90:15, 97:6 Become - 23:16, 27:15, 44:14, 52:8 Begun - 65:10 Behaviour - 91:21
Behaviours - 36:7
Behind - 68:18 Below - 50:22, 64:15, 82:23, 83:3, 83:4
Beneficial - 20:16, 56:17, 72:20,
96:13, 96:19, 99:14
Benefit -9:1,
18:25, 24:25, 49:6,
57:4, 59:3, 62:25,
72:1, 83:12,
120:25, 125:13, 126:23
Benefits - 8:20, 10:10, 32:20,
56:19, 91:12, 92:4,
92:6, 117:18,
117:20, 119:24,
120:4, 120:6, 132:4
Bespoke - 139:8,
139:11
Bias - 111:7, 111:15
Big-68:22, 103:1, 139:19
Biggest - 8:11, 125:13
Bill-7:21, 8:19, 10:24, 16:6, 73:1, 89:7, 91:13, 92:6, 127:8, 127:12, 134:16
Billing - 99:1
Bills - 7:22, 9:11, 9:12, 9:14, 15:6, 15:23, 17:21, 38:2, 39:2, 45:13, 61:24, 88:20, 89:3, 90:16, 91:4, 92:23, 92:25 Bit - 22:6, 28:14, 36:19, 36:20,
36:22, 41:15,
41:19, 46:17,
47:24, 48:2, 56:13,
59:18, 59:23, 63:9,
67:16, 70:1, 78:5,
85:25, 89:11, 98:25,

108:2, 122:15,
141:13
Blend - 147:13
Blessing - 72:7
Block - 52:23,
54:15, 115:13
Blue - 58:17, 58:22
Board - 1:15, 6:14,
19:4, 26:3, 110:18,
111:15
Bob-1:11, 1:18
Boiler - 43:22,
44:21
Bookend - 42:18
Both - 10:12, 12:6,
12:14, 14:3, 14:20,
17:9, 18:8, 18:18,
18:24, 20:6, 20:10,
23:24, 29:2, 35:4,
41:23, 54:14,
92:16, 97:19,
109:9, 110:1,
110:20, 125:17,
125:18, 127:12,
127:18, 128:9,
129:6, 129:14,
131:16, 131:18,
136:14, 137:8,
138:8, 142:10
Bottom - 51:9,
54:20, 67:20, 78:11,
147:15
Bounded - 66:23
Break - 47:25,
104:10, 151:23
Breaks - 35:6
Brief - 1:13, 2:23,
20:18
Broad - 66:2,
119:15, 140:6
Broader - 10:4,
63:11
Broadly - 152:21
Broken-38:5,
152:16
Brought - 97:12,
150:6
Buckets - 62:9
Budget - 139:18
Budgets - 86:20
Building - 22:11,
42:6, 48:25, 64:10,
76:19, 76:25,
101:4, 151:13,
151:14, 151:15
Buildings - 20:23,
41:17, 42:9, 43:24,

44:2, 44:6, 45:10,
45:12, 45:13,
45:21, 82:8, 99:4
Built - 103:25,
119:8, 122:3
Bull - 138:4
Bullet - 71:12,
84:4, 108:20
Bullets - 8:6
Bump - 64:20
Burden - 90:15
Burning - 112:12
Buses - 42:2
Businesses - 25:2
1
Busy - 40:15
C

C\&I-122:5
Calculated - 49:5,
100:22, 100:23, 116:1, 116:11
Calculation - 47:13 , 116:10
Calibrate - 156:1
Calibrated - 70:10
California - 73:13,
73:17, 97:16,
128:25, 129:17,
129:21, 129:22,
129:23, 130:6,
130:10, 130:14,
130:18, 131:7,
131:10, 131:15,
131:21, 132:5,
132:11, 132:19,
138:22
Call - 36:10, 80:6,
86:15, 86:16,
125:25
Called-3:7, 58:2,
68:3, 77:10
Calling - 87:2
Canada-4:9,
95:16, 131:2
Canadian - 46:15,
59:23, 68:18, 75:11, 124:25
Can't - 77:3, 90:17, 93:12, 119:7,
148:23, 153:17
Capabilities - 7:10
Capacity -7:2, 7:5,
9:4, 11:16, 18:9,
18:20, 19:4, 23:2,
23:4, 23:19, 24:4,
24:21, 25:5, 25:22,

26:18, 27:12, 27:15, 34:11, 35:3, 41:3, 48:12, 52:16, 52:20, 52:25,
53:10, 53:13,
53:21, 53:25, 54:1,
56:20, 57:4, 59:3,
61:22, 62:15,
62:19, 76:10,
92:20, 151:8
Capital-25:19,
65:9, 86:6
Capture - 29:5,
31:21, 88:8,
151:20, 155:8
Captures - 31:24,
62:5
Capturing - 62:6,
155:11
Careful-63:10, 65:22, 91:7,
126:17, 136:7,
137:20
Carefully - 65:5,
65:16, 91:23,
137:1, 137:12,
138:5, 143:6
Carry - 9:16
Cars - $68: 24,68: 25$
Cases - 7:21, 21:5,
45:17, 48:21, 51:16
Cashflow - 93:18
Catch - 95:19
Category - 152:7
Cause - 6:24
Causing - 73:7
Cautions - 122:19
Caveat-123:14,
137:10
Cent-17:3, 27:25,
31:5, 33:7, 87:20
Cents-31:2,
31:12, 33:12,
87:21, 116:2,
116:12, 118:1,
118:8
Certain-20:25,
36:2, 55:23, 72:7,
82:24, 83:3, 102:11
Certainly - 15:15,
25:12, 63:13,
63:25, 65:15,
65:18, 67:2, 74:7,
77:17, 83:18,
88:24, 90:20, 93:11,
117:8, 126:6,
132:19, 142:19,

149:4, 156:20,
157:9
Certainty - 142:12
Cetera - 49:3,
69:22, 72:10,
129:13, 130:20, 151:17
CGM - 25:8
CHAIR - 1:2, 1:9, 66:6, 66:7, 66:10, 94:13, 94:14, 94:18, 104:10, 104:11, 104:16, 104:21, 105:3, 105:6, 108:6, 108:7, 108:10,
124:10, 124:13,
124:16, 158:16,
158:17, 158:21,
158:22, 159:3,
159:9
Challenge - 136:10
Challenges - 94:5,
137:16
Change - 30:11, 30:16, 30:25, 33:24, 34:5, 34:10, 35:8, 39:4, 101:18, 106:15, 120:24
Changed - 5:24, 35:21, 35:22, 125:3 Changes - 16:6, 16:16, 108:19, 108:20, 143:18
Changing - 31:25,
36:6, 36:7, 40:21,
97:2
Characteristics - 7
0:20, 85:16
Characterization -
86:12
Charge - 56:8,
58:12, 58:19,
70:21, 74:17,
98:17, 123:12, 123:21
Chargers - 30:9,
57:11, 59:10, 68:23,
68:25, 69:2, 69:9,
69:11, 69:14, 69:16,
69:20, 71:3
Charges - 10:1,
21:16, 64:11, 64:13,
70:17, 122:3,
122:5, 122:10,
122:11, 122:17,
122:20, 122:24,

123:4, 123:5, 123:19, 124:4, 124:7
Charging - 34:24,
43:11, 46:21, 58:23,
59:1, 63:7, 70:23,
71:2, 95:4, 95:10,
95:19, 96:5, 96:9,
96:11, 97:20, 98:7,
98:9, 98:10, 98:11
Chart - 49:24, 52:1,
69:10, 75:5, 87:4,
87:7, 87:9
Charts - 57:17
Cheaper-133:21
Check - 90:24,
103:4, 116:15
Cherrypicked - 12
1:11
Chicken-68:22,
70:25, 95:22, 95:24
Choice - 72:14, 119:8
Choices - 93:9
Choose - 92:9,
139:7
Chose - 29:22,
30:5, 52:19
Chunks - 147:4
CI-156:21
Circumstance - 11
4:12
Circumstances - 9
3:14
City - 75:11
Clarification - 100:
12
Class - 122:20,
130:20, 141:16,
142:9, 148:15
Classes-10:11,
32:13, 89:13,
135:7, 135:13,
136:6, 136:14,
136:16, 138:2,
156:18
Classic - 51:24
Click - 148:2
Climates - 50:15
Close - 126:9,
134:5
Closely - 67:3,
80:2, 134:24
Closer - 48:3,
126:11, 126:12
Coefficient - 50:16,
50:20, 75:18,

80:19, 100:24,
101:5, 101:12
Coincident - 22:5,
22:6
Cold - 50:15,
75:12, 79:16,
79:24, 85:7
Colder - 76:20,
76:23
Coldest - 50:24,
80:20
Collection - 143:8
Column - 31:24,
87:24
Columns - 31:7,
31:15, 31:21
Combination - 12:
14, 17:25, 18:24,
26:24, 53:21,
53:25, 57:2, 86:18,
93:2, 110:6, 110:20,
115:22, 126:24,
127:9, 147:16
Combinations - 12
:17, 26:21, 29:17,
92:14, 92:15,
125:11
Combining - 99:18
Come - 18:19,
39:11, 41:10, 43:5,
48:11, 58:24, 60:15,
80:24, 81:4, 90:12,
101:17, 102:3,
139:7, 147:3,
157:23
Comes - 19:23,
34:1, 34:5, 34:7,
39:6, 80:19, 80:24,
92:20, 126:18,
126:23, 137:15
Comfortable - 111:
13, 111:14
Coming - 24:22,
37:23, 37:25,
38:13, 69:25, 79:4,
97:1, 97:22, 114:6,
121:20, 141:12
Commencing - 15
9:8
Comment - 75:9,
78:12, 144:21,
156:13
Commercial - 5:10,
15:17, 25:20, 42:9,
44:1, 49:25
Commission - 2:18
, 4:7

Commissioners -
1:10, 4:13, 124:16
Commissions - 4:6
Common-81:18,
153:15
Commonly - 78:10, 85:8, 147:10
Company - 112:7
Comparable - 80:1
7, 130:21, 151:14,
152:19
Compared - 16:24, 118:6, 118:7
Comparing - 112:2
Comparison - 30:2
1, 102:19, 102:24
Complement -98:

4

Complementing -
84:7, 88:12
Complements - 85 :4
Completed - 140:2
2
Complex - 91:22
Compliment - 83:1
Component - 158:
11, 158:13
Components - 33:
24, 35:7, 38:6,
125:18, 129:22,
139:12
Comprehensive -
3:14
Compressors - 14
6:3, 149:21,
151:17, 154:12
Computation - 25:
Computations - 11 6:5
Compute - 7:6,
7:13
Concern - 157:16, 157:19
Concerned - 80:8,
86:5
Concerns - 9:4,
23:18, 62:18,
141:14
Concluded - 159:3
Concludes - 66:5
CONCLUDING - 15
9:13
Conclusion - 141:9
Conclusions - 111:

5, 157:24	138:4, 145:7,	Costs - 9:5, 9:8,	Curious - 76:1,	Decarbonization -
Conducting - 81:1	145:13	10:9, 10:18, 21:14,	76:4, 78:22, 79:20,	86:21
4	Continues - 13:25	24:18, 25:6, 25:7,	84:9, 84:10	Decide - 90:8
Confidential - 13:9	Continuing - 9:18,	25:11, 25:15, 26:18,	Current - 48:16,	Decisions - 136:18
Confirm - 86:7	51:18, 65:21	32:20, 34:7, 34:11,	49:5, 95:4, 118:12,	Decline - 34:14,
Confusion - 122:1	Contribute - 23:3,	35:3, 42:25, 43:4,	145:12	37:16, 37:19, 37:21
3	61:19	43:10, 48:1, 48:12,	Currently - 24:5	Declines - 37:23,
Conservation-2:5	Contribution-21:1	49:3, 56:11, 56:20,	Curtailment - 24:4,	37:25
, 6:23, 18:14,	2, 21:20	61:20, 63:15,	62:12, 107:18	Declining - 37:9
22:15, 23:25, 109:1	Contributions - 25 :	73:21, 86:6, 88:5,	Curve - 68:1	Decrease - 30:13,
Conservatism-51	14	89:19, 121:15,	Custom-147:11	34:3, 89:18, 91:13
:11	Control - 107:21	121:17, 124:1,	Customer - 7:22,	Default - 52:9
Conservative - 51:	Convection - 113:6	137:3	8:8, 15:6, 15:15,	Defeats - 106:22
6	, 113:11, 113:13	Couldn't - 139:1	15:22, 24:17,	Definitely - 8:19,
Conserve - 109:7	Conventional - 24:	Counsel - 66:12,	25:13, 27:5, 31:19,	71:24, 106:17,
Consider - 24:18,	23, 36:14	124:21	46:9, 55:25, 60:1,	118:19, 151:11,
35:13, 55:18, 72:11,	Conventionally - 2	Count - 20:10	61:16, 71:14, 72:3,	153:9
107:16, 158:6	4:1	Counterintuitive -	79:11, 83:9, 84:10,	Degree - 1:22,
Consideration - 11	Conversation-79:	22:18	84:13, 84:25, 89:6,	77:5, 79:1
2:5, 112:10, 114:11	18	Country - 150:18	89:8, 90:14, 91:14,	Delegate - 86:1
Considerations -7	Conversely - 31:8,	Couple - 64:8,	91:20, 100:1,	Deliver - 76:11,
1:20, 93:9	55:11	75:8, 93:17, 108:1	122:13, 124:22,	76:18, 101:7,
Considered - 56:2	Conversion - 21:2,	Coupled - 12:10,	126:7, 126:23,	102:12, 102:15
4, 57:8, 120:13,	21:3, 42:7, 42:10,	31:14, 97:11,	130:20, 134:22,	Delivered - 44:8,
138:12	42:14	112:23, 130:7	134:24, 135:4,	101:3, 102:15
Constructs - $2: 7$	Converted - 79:6	Coupling - 99:23	135:17, 136:14,	Delivery - 42:1
Consumed - 15:21	Cooperation - 142:	Course-24:14,	137:6, 148:15,	Delta-33:11
Consumer - 108:8,	1, 142:6	47:19, 48:13,	156:18	Demand - 2:5,
108:12	Core - 18:4, 25:2,	66:22, 108:18,	Customer's - 123:	6:23, 9:2, 16:16,
Consumers - 45:2	130:24	117:2, 117:3,	22	18:14, 18:17,
4, 109:6, 110:11,	Corollary - 7:19	117:11, 119:11		22:15, 22:19,
110:14, 110:21,	Corrected - 49:19	148:7, 155:7,	D	22:24, 23:3, 23:15,
110:22	Correction - 5:5,	155:16	Dakota - 132:5	23:25, 24:2, 24:3,
Consumer's - 109:	5:8, 5:12, 5:20,	Cover - 8:13, 19:17	Damper - 14:6	24:15, 25:23, 26:11,
3	51:10	Covered - 43:8,	Dangerous - 78:14	42:12, 48:5, 48:24,
Consuming - 54:2	Corrections - 4:20	61:12	Darker - 58:21	56:3, 56:18, 62:13,
3	Corresponding - 8	Crafting - 3:14	Data - 13:9, 46:15,	101:23, 107:17,
Consumption - 6:2	7:22	Create - 107:6	50:13, 51:2, 51:5,	107:20, 107:24,
4, 7:18, 9:6, 9:13,	Corresponds - 49	Credited - 84:1	60:10, 76:6, 81:24,	113:25, 122:2,
9:22, 15:14, 15:18,	24	Crit	103:25, 104:1,	122:5, 122:11,
16:7, 17:15	$\begin{array}{lc} \text { Co } \\ 18 \end{array}$	57	104:3, 143:8,	122:17, 122:20,
$29: 6,31: 22,31: 23$	21:15, 24:16,	$60: 7,82: 2,82: 12$	143:23, 144:2,	$123: 5,123: 21$
35:21, 39:4, 40:10,	24:24, 24:25, 25:8,	83:16, 92:19,	152:4, 152:17	124:4, 124:6,
40:11, 40:12, 55:23,	32:14, 34:18,	106:5, 106:14,	Dates - 145:5	158:4, 158:12
56:21, 62:1, 62:9,	34:22, 44:15, 45:1,	107:15, 107:23,	Day - 39:14, 39:18, 40:3, 55:23, $98 \cdot 3$	Demanded - 103:6
62:17, 88:11, 91:5,	46:18, 46:24, 49:6,	108:2, 108:21,	$\begin{aligned} & 40: 3,55: 23,98: 3 \\ & 106: 10,123: 24 \end{aligned}$	Demographic - 93:
91:9, 91:20, 92:24,	56:13, 57:7, 59:12,	109:6, 122:17,		15, 93:16, 94:2
94:9, 127:19,	59:19, 59:21,	155:18, 155:24,	$79 \cdot 17$ 99:5, 99:8	Demographics - 1
135:5, 135:6,	72:12, 72:15,	156:8, 156:16,		31:19
149:4, 153:4	73:20, 74:11, 76:24,	157:25, 158:11		Demonstrating - 1
Contained - 30:2	77:1, 88:7, 90:23,	Critically - 10:11,	aling - 147.8	33:14
Contains - 36:11	90:24, 105:10,	15:20, 16:5, 18:22,	Decade - 12:5, $12: 9.38: 13.39: 22$	Department - 3:6
Context - 76:17	105:12, 118:2,	61:20, 62:14, 66:1,	39.23, 55.10	Describe - 28:19,
Continuation - 48:	119:16, 119:21,	81:15	39:23, 55:10,	48:6
16	122:18, 134:5,	Cumulative - 145:1	55:14, 67:2	Described - 41:25,
Continue - 65:17,	155:3	7	$3: 13,3: 17$	$48: 10,48: 20,49: 7 \text {, }$

74:5, 80:18, 81:18
Designed-42:17,
124:8, 157:1, 157:5
Designs - 56:10,
86:23
Despite - 121:18
Detailed-14:22,
123:13
Determine - 6:18,
13:5, 14:13, 81:17
Determined - 113:2
4, 113:25
Detroit - 58:8
Develop-67:25,
70:9
Developed - 42:15,
63:25, 70:10
Developing-3:10,
44:11, 64:17,
121:20
Development -64: 22
Didn't - 80:20
Difference - 39:21,
88:8, 102:1, 103:1,
157:4
Differences - 29:18
, 89:14, 131:23,
151:6, 151:11,
151:18, 157:7
Different - 3:18,
10:10, 17:17,
22:10, 26:19,
26:21, 29:1, 29:10,
29:11, 29:16, 30:10,
37:24, 43:19,
43:20, 44:10,
44:13, 45:9, 56:10, 56:15, 56:24, 62:8, 77:7, 77:8, 78:3, 83:8, 86:14, 86:22, 89:8, 89:13, 93:19, 96:6, 97:3, 97:6, 104:3, 106:19, 107:4, 107:7, 110:2, 110:5, 130:23,
131:13, 131:19,
135:19, 135:20,
136:14, 150:17,
155:25, 156:17
Differential - 26:20
Differentials - 157:
14
Differently - 157:1
Difficult - 35:18,
108:17, 140:2
Dig-59:19

Digging - 142:8
Direction - 135:18,
136:20, 137:8
Directional-60:18,
125:25, 128:4,
128:5, 140:12
Directionally - 125:
6
Directions - 77:8, 129:7
Directly - 7:5,
10:17, 18:10,
18:13, 131:12
Discern-29:18
Discount -51:1,
51:8
Disembed-116:8
Displace - 85:5
Displacing - 24:8,
127:20
Dissatisfaction-1
22:14
Distributed - 8:20,
91:14, 114:4
Distribution - 32:1
2, 32:20, 89:7,
135:12
Distributive - 138:
1
Dive - 123:13
Divide - 101:11
Diving - 141:16
Doesn't - 62:16,
81:25, 89:6, 91:3,
95:5, 140:5, 153:19
Dollar - 59:21
Dollars - 12:4,
12:22, 21:11, 21:17,
21:22, 21:24, 55:13
Domestic-6:19,
6:22, 28:1, $33: 1$
Dominant - 131:14
Dominated - 148:1 8
Don't - 11:15,
11:21, 17:4, 17:5,
31:9, 70:22, 71:18,
73:16, 78:19,
79:21, 84:17,
86:10, 90:5, 91:17,
94:1, 94:20, 96:17,
103:15, 106:18,
107:6, 109:9, 111:5,
131:12, 134:8,
143:19, 148:23,
150:18, 152:15,
157:19, 158:23

Doozy - 75:13
Dotted - 36:25
Downward - 13:25
Dramatic - 39:5
Draw - 82:16,
131:24, 140:3,
150:16
Drawn - 131:6
Drill - 136:5, 151:1
Drilling - 142:8,
142:9
Drive - 46:24, 71:8,
86:10
Drivers - 72:11
Drives - 86:5, 88:4,
153:12
Driving - 46:23,
58:13, 80:3
Drop-87:22,
87:23, 91:9
Dropping - 91:6
Due - 14:1, 14:3,
108:25
Duel - 82:25
Dunk - 137:19
Dunsky - 84:5,
84:17, 140:21
Duty - 41:24, 41:25
Dwellings - 94:7
Dynamics-67:5, 95:15

E

Each - 42:16,
42:23, 110:3, 123:6, 123:24, 137:14, 146:5, 146:10
Earlier - 27:19,
43:24, 54:6, 86:1,
88:19, 88:25, 100:6
Earliest - 70:13
Early - 21:17,
43:23, 67:25, 68:16
Easiest - 65:19
Easily -56:18,
58:11, 59:7, 93:12,
122:9, 137:17
Eastern - 13:17,
13:23, 14:5
Easy - 58:15
Econometric - 35:
19, 36:14
Economic-2:2,
10:7, 71:16, 83:13,
84:8, 84:12, 84:16, 84:23, 91:11,
109:11, 110:25,

112:2, 136:3, 153:1,
153:5
Economical - 47:2
2
Economically - 16 :
4, 19:15, 25:24,
29:5, 119:17, $120: 9$
Economics - 1:20,
3:2, 4:2, 4:15, 46:9,
71:14, 72:3, 85:1,
111:21, 113:3,
128:23
Economy - 112:8
Edison-58:8
Edward - 2:10, 4:9
Effect-6:22, 7:17,
7:20, 7:22, 8:19,
9:9, 13:19, 15:13,
16:6, 17:12, 17:13,
17:14, 26:17,
28:23, 30:3, 30:7,
31:3, 31:22, 31:24,
33:3, 34:1, 38:25,
42:5, 47:2, 54:25,
63:15, 71:6, 78:17,
81:25, 83:17, 89:7,
97:1, 106:11,
106:21, 107:25,
108:24, 110:6,
112:20, 114:5,
117:17, 118:20,
120:6, 138:2
Effective - 24:24,
36:1, 46:24, 57:7,
62:6, 72:12, 73:20,
121:7, 140:8, 155:4
Effectively - 102:1
4
Effectiveness - 72:
16, 74:11, 122:2
Effects - 8:10,
10:18, 12:6, 12:15,
15:19, 16:7, 18:2,
24:7, 26:20, 26:22,
32:12, 35:8, 58:5,
71:24, 72:3, 81:3,
83:21, 88:14, 92:4,
94:1, 110:2, 110:5,
112:22, 112:24,
135:13, 137:9,
142:9
Efficiency - 2:4,
3:5, 3:12, 3:18,
10:15, 26:10, 34:4,
50:17, 63:16, 65:3,
65:25, 94:9,
102:12, 109:1,

128:10, 129:5,
129:9, 129:11,
129:15, 129:24,
130:11, 130:25,
147:3, 147:7,
153:11, 155:10
Efficient - 50:18,
62:4, 127:21
Efficiently -109:13
, 110:23
Efforts - 3:13, 8:23,
10:22, 18:13,
130:3, 158:24
Egg - 68:22, 70:25,
95:22, 95:24
Eight - $31: 5$
Eighteen - 143:14
Either/Or - 108:3
Elasticity - 36:11,
36:13, 37:14, 48:19
Electrical - 46:24,
57:16, 67:24
Electricity - 4:3,
$5: 18,7: 12,11: 12$, 13:16, 13:20,
13:22, 24:12, 36:6,
36:8, 44:7, 46:22,
79:19, 83:2,
100:14, 102:16,
103:23, 109:12,
109:13, 110:23,
111:1, 111:24,
111:25, 117:12,
127:21, 132:10,
132:12, 132:16,
132:25, 133:9,
133:13, 133:15, 133:19, 133:21,
134:5, 134:7, 153:4
Electrified - 56:3,
79:11
Electrifies - 15:16
Electrify - 8:22,
12:8, 43:20, 44:5, 45:7, 45:14, 86:3,
92:18, 109:7,
110:16, 119:3
Electrifying - 44:6
Element - 123:7,
140:22
Elements - 130:16,
133:16
Eleven - 145:14
Elsewhere - 131:3
Embedded - 48:18,
116:5, 116:10
Emission - 129:1

Emphasize - 123:1	130:20, 151:17	Expenditures-16:	F	96:25
1	European - 52:7	2, 31:17, 31:18,		Feel - 84:11
Empty - 93:17	EV - 46:11, 46:16,	32:5, 61:22, 87:23,	Face - 130:19	Feet - 44:4
Enchantment - 64:	60:24, 64:11, 65:19,	126:4		Field - 1:24
18	70:6, 71:8, 96:9,	Expensive - 14:2,	119:7, 147:18,	Fifteen-1:21
Encourage - 55:22,	97:20, 114:9,	111:22	149:23, 152:2	Figure - 5:9, 45:11,
56:5, 57:16, 72:11	139:23	Experience - 1:14,	Facility -61:25,	49:18, 49:24,
Encourages - 56:7	Evenings - 39:20	2:8, 59:22, 118:12,	14	50:12, 77:23,
Encouraging - 72:	Eventual - 17:7	124:24, 128:1,	$2: 1$	85:20, 100:16,
22	Eventually - 155:1	150:7, 156:9,	Facing - 138.24	100:25, 102:4,
Ends - 92:2, 92:10	Everybody - 1:3	156:14	Facing - 138:24,	102:9, 102:24,
Energy's - 87:23	Everybody's - 85:1	Experienced - 77:2	139	105:21, 125:1,
Engineer - 1:22	5	Experiences - 70:4	Factored	125:8, 125:13,
Engineering - 1:22	Everyone - 1:18	Expert - 2:13, 2:16,	Fa	125:23, 128:6,
England - 13:12,	Everything - 16:20	3:19, 11:8		149:17
13:18, 53:12,	Evidence - 124:23,	Experts - 159:5	84:20, 86:12	Figures - 135:23
155:17	155:16, 159:5	Explain - 11:7,	84:20, 86:12,	Figuring -64:11
Enhanced - 61:15	Evs - 59:11, 68:19,	15:7, 16:11, 22:16,	90:13, 91:8, 98:25,	Finally - 57:14
Ensure - 73:18,	70:20, 96:9, 96:11	22:20, 29:24,	106:25, 111:6,	Finances - 46:11
91:10, 94:1, 98:11	Exacerbate - 9:10	43:15, 45:2, 52:19	114:9, 114:20,	Financing - 47:14
Entirely - 80:22	Example - 17:2,	Explaining - 88:19		Find -9:2, 9:20,
Entirety - 135:4	21:16, 31:1, 31:2,	Explicitly - 40:7	Fairly - 24:24,	9:23, 19:16, 23:24,
Envelope - 12:25	32:15, 34:12,	Explore - 66:25,	$37: 18,37: 22$, $58 \cdot 14,59 \cdot 7,75$	25:21, 26:23,
Environment - 4:1	34:22, 36:21,	87:3, 89:11	$77 \cdot 24,78 \cdot 10,80 \cdot 2$	152:18, 155:12
6, 99:6	36:25, 37:13, 43:6,	Exported - 133:9	(24, 78:10, 80:2,	Finding - 8:5, 11:4
Equation-134:2	45:11, 45:18, 46:10,	Exporting - 34:17,	86:1, 87:19, 88:3,	Findings - $6: 6,8: 1$,
Equipment - 64:2	55:12, 56:7, 58:8,	133:6, 133:12,	134:25, 139:12	11:8, 16:10, 17:21,
Equivalent - 3:8,	60:24, 64:3, 65:14,	133:15	134:25, 139:12	18:23, 19:8, 20:14,
50:18, 102:14	69:19, 81:16,	Exports - 6:20,	Fall-51:3	23:21, 26:5, 27:14,
Era-23:17, 110:15	81:22, 82:16,	6:25, 55:2, 62:22,	Falling - 76:12,	28:16, 63:18, 82:1,
Error - 100:8	82:24, 84:21, 85:1,	132:20	6:23	119:19
Essential - 71:25	85:9, 91:2, 91:22,	Exposed - 92:25	Falls - 7:3, 7:7,	Fine - 77:6
Essentially -6:5,	97:17, 112:21,	Exposure - 18:3,	8:15, 9:19, 10:20,	Finger - 140:19
6:20, 8:13, 9:11,	120:18, 121:8,	34:10, 35:2, 38:2	12:6, 19:17, 19:24,	Fired - 79:7
11:10, 13:12, 15:9,	134:13, 138:14,	Express - 109:5	20:6, 20:11, 20:12,	Firm - 11:15, 11:17
19:13, 20:7, 21:9,	138:23, 141:13,	Expressed - 115:7	26:16, 27:7, 32:15,	First - 1:6, 1:10,
24:20, 26:23,	143:2, 150:20,	Extensive - 2:3,	:17, 52:22, 53:2,	4:25, 5:22, 6:11
29:12, 30:4, 30:12,	154:11, 155:18	2:8	53:7, 54:1, 54:3, $54: 14,77 \cdot 5,110: 15$	8:1, 28:17, 31:24,
32:19, 33:23, 35:6,	Examples - 57:18,	Extensively - 4:3	54:14, 77:5, 110:15	37:2, 47:19, 80:7,
36:3, 36:12, 37:3,	60:4, 128:20,	Extent - 27:12,	Family - 86:20	87:14, 122:14,
37:8, 38:2, 38:9,	132:14, 156:7	37:23, 75:7, 81:3,	Fans - 146:3,	128:14
40:4, 48:19, 50:16,	Excellent - 87:8	81:17, 83:19, 84:3,	4.	FITZGERALD - 10
52:8, 53:1, 53:5,	Except - 85:11	91:16, 92:17	ar - 76:7, 90:6	8:9, 108:11, 110:4,
53:9, 53:16, 55:5,	Excluded - 92:5,	External - 26:16	150:11	110:10, 111:4,
62:24, 63:22,	115:12	Externally -63:2	Fast-38:16, 69:11,	111:12, 112:3,
64:23, 78:16,	Excludes - 52:18,	Extrapolating - 14	69:16, 95:4, 95:10	113:1, 113:12,
83:18, 101:11,	92:3	6:18, 149:15,	Faster-44:17,	114:8, 114:22,
141:19	Excluding - 115:9	150:12	, 150:1,	115:6, 115:15,
Establishments - 6	Existence - 72:4	Extrapolation - 14	4	115:20, 116:7,
9:21	Exists - $24: 5$	7:21	Fault - 146:17	116:20, 117:1,
Estimate - 60:5	Expand - 11:7	Extreme - 37:13,	Favourable - 47:4,	117:9, 117:22,
Estimated - 36:19,	Expansion - 9:5,	38:22, 38:25, 39:1,	47:6, 128:24 Feasible - $154 \cdot 2$	118:10, 118:21,
36:22, 119:23	9:8, 15:11, 26:18	39:6, 39:10, 54:24,	Feasible - 154:2	119:10, 120:11,
Estimating - 35:20,	Expect - 63:22,	55:3, 55:4	deral - 2:17, 3:5,	121:1, 121:5,
36:15	67:15, 99:7,	Extremes - 134:25	4.6, 10:12, 34:21,	121:25, 123:2,
Et-49:2, 69:21,	107:23, 116:24		43:8, 46:15, 63:13,	123:15, 124:9,
72:10, 129:12,	Expected - 131:10		68:18 Federally - 65:23,	124:14

Five - 2:18, 3:9,
30:10, 37:2, 46:12, 47:15, 47:19,
68:18, 75:13, 82:11, 104:14, 105:9,
105:13, 105:18,
105:21, 116:11,
116:12, 128:6,
143:12
Fixed - 8:14, 61:19,
88:5, 121:18
Flat - 37:8, 57:15,
58:17, 58:18,
75:17, 98:14, 106:8
Flatter - 141:2
Flexibility - 132:24,
133:20
Flexible - 97:4
Flippantly - 109:10
Florida - 132:5
Flowing - 18:16,
53:14
Flows - 18:5,
19:14, 115:18,
141:1
Flush - 143:24
Focus - 17:12,
22:19, 24:14,
142:21
Focused - 20:22,
137:6, 141:14,
147:8
Folks - 25:18,
45:12, 45:20,
46:16, 51:3, 70:21,
71:7, 76:14, 80:16,
80:21, 81:9, 82:18,
82:22, 94:18, 105:7
Follow - 52:6, 55:6,
94:21, 94:25,
98:24, 158:19
Following - 46:8,
98:19
Footnote - 67:19,
67:22, 68:2
Forecast - 13:6,
13:10, 13:11, 14:11,
16:21, 35:12,
35:13, 36:9, 36:10,
36:17, 36:18, 37:1,
$37: 3,37: 4,37: 9$,
38:4, 38:12, 38:17,
39:24, 46:14,
46:15, 52:14,
53:19, 117:3, 117:5,
117:8
Forecasted - 38:16

Forecasts - 14:20
Forefront - 130:2
Forgetting - 148:1
9
Form - 64:1, 65:18,
81:4, 95:25, 96:3,
125:19
Forms - 9:3
Forward - 28:9, 135:12, 136:19, 146:12
Fossil - 79:19
Found - 22:21,
59:3, 89:15, 95:17
Four - 66:2, 87:21
Fraction - 50:7,
85:6
Framing - 84:18
Free - 23:9, 117:12
Freed - 25:4
Freezing - 50:20
Frequently - 122:7
Friend - 94:22
Friend's - 98:20
Front - 36:4, 36:5,
94:5, 136:10
Fronts - 137:13
Fuel - 10:15, 45:19,
45:20, 71:18,
79:19, 82:25, 93:20
Fueled - 79:8
Fueling - 70:24,
73:20, 73:21, 75:1
Fuels - 112:2
Full - 10:1, 51:9,
57:12, 59:9, 64:22,
68:10, 87:8, 113:18
Fully - 10:21, 89:2,
119:15
Fundamental - 131
:25
Fundamentals - 14
:18, 136:2, 136:3
Furnace - 79:2,
79:7
Furnaces - 78:24
Further - 42:3,
63:20, 72:10, 76:2,
81:6, 82:10, 87:3,
92:13, 104:12,
111:1, 149:19,
158:15
Future - 14:25,
26:18, 61:21,
62:19, $93: 9$

Gas - 13:19, 14:2, 74:24, 118:20, 156:5
Gasoline - 7:20,
8:16, 16:2, 46:13, 46:23, 46:25,
70:24, 73:22,
74:12, 74:14,
74:18, 74:21
General - 2:6, 30:6,
45:23, 64:12, 113:8, 113:22, 114:25, 115:23, 117:6,
121:10, 123:4, 139:14
Generally - 13:16,
23:13, 25:21, 28:2, 28:19, 31:16, 41:6,
46:15, 49:15,
61:12, 63:18, 71:1,
77:6, 95:15, 96:7,
99:13, 103:5,
118:15, 147:2
Generation - 18:5,
18:21, 19:14
Get - 5:23, 25:4,
32:24, 33:2, 35:7,
43:25, 46:16, 57:4,
58:20, 59:14,
68:12, 71:6, 72:1,
78:25, 80:25,
83:12, 86:3, 89:14,
95:9, 99:20, 111:23,
119:5, 130:4,
142:14, 142:20,
145:17, 149:14,
149:17, 153:18,
154:25, 155:1
Gets - 57:21,
76:20, 76:23,
126:11
Gigawatt - 21:6,
21:8, 37:17, 51:20, 51:21, 51:23, 52:5,
52:11, 54:21, 115:2, 115:8
Give - 1:13, 2:23,
20:18, 42:17,
65:21, 78:20,
121:11, 135:24
Given - 9:4, 15:15,
15:22, 62:18,
101:5, 103:16,
112:5, 132:14,
141:1, 141:2
Gives - 59:2,

74:17, 81:20,
88:13, 101:18,
127:23, 133:20,
135:17
Glean - 87:11
Go-1:5, 6:2,
29:20, 33:13,
33:21, 39:2, 39:3,
39:13, 42:24,
43:13, 44:25, 49:9,
56:13, 68:12, 69:8,
74:25, 88:7, 91:4,
91:5, 103:4,
104:22, 108:15,
114:13, 116:15,
117:3, 136:21,
145:25
Goal - 127:14
Goals - 97:5, 97:7
Going - 11:24,
14:24, 28:14,
36:24, 54:16,
64:14, 65:16, 67:4,
67:7, 71:8, 71:15,
76:9, 78:13, 78:20,
79:25, 91:9, 91:18,
91:25, 97:2,
101:25, 102:18,
113:25, 120:24,
133:18, 135:24,
136:16, 137:24,
137:25, 138:1,
141:1, 143:11,
144:2, 152:16
Gone - 90:6
Good-1:3, 1:9,
1:18, 2:25, 3:25,
66:10, 79:13, 85:3,
94:18, 104:9,
108:10, 124:17,
124:19, 135:17,
135:24, 138:22,
142:1, 143:11
Google - 75:14
Got -68:12, 78:14, 105:8, 152:3
Government - 3:5,
43:9, 63:13, 95:9,
110:12, 110:19
Governmental - 32
:17
Grab-138:3
Grabble - 138:10
Gradually - 145:16,
157:16
Graph - 37:20,
126:8

Grate - 71:13
Gray - 40:25
Greater - 39:9,
41:4, 41:10, 62:10,
117:19, 119:5,
149:15
Ground - 60:11
Group - 124:22
Groupings - 66:2
Groups - 137:3
Grow - 22:18,
38:15, 38:16
Growing - 8:2,

93:16

Guarantees - 96:1
Guess - 1:5, 32:21, 84:16, 93:7, 105:8,
105:11, 106:14, 106:22, 107:17, 112:6, 115:21,
118:22, 125:16,
128:14, 135:22,
156:13, 158:23
Guests - 85:12
Guided - 62:2

H

Half - 50:21, 50:22,
67:17, 67:18,
75:20, 75:24, 87:20
Hand - 126:7
Handful - 30:5
Handle - 81:19
Handled - 137:17
Happening - 39:4,
73:9, 143:20
Happy - $1: 3$
Hard - 86:10,
129:6, 130:15,
142:21
Hardware - 83:9
Haven't - 69:4,
76:6
Head - 85:9
Heading - 5:8
Healthy - 77:24
Heap - 64:7
Hearing - 159:4
Heated - 82:7,
82:8, 101:22, 102:8
Heaters - 76:15
Heating - 21:3,
21:4, 21:5, 24:9,
42:7, 42:8, 45:15,
47:13, 49:1, 77:3,
78:4, 81:2, 103:17,
104:4, 111:3,

111:25, 113:6,	79:8	131:17	65:20, 119:15,	:15, 25:20, 91:12,
113:7, 113:11,	Hour - 17:4, 28:1,	Hydro's - 18:5,	119:25, 140:12,	109:20, 153:9
113:13, 113:17,	31:6, 31:13, 33:8,	36:9, 36:17, 37:1,	141:17	Improving - 26:10
113:18	33:13, 79:23,	37:3, 38:12,	Implementable - 1	Incent-71:19
Heats - 103:22,	101:19, 106:19,	146:23, 149:10	42:10	Incentive - 43:7
103:24	107:4, 107:7,		Implementation-9	43:8, 47:6, 57:14,
Heavy - 40:24,	115:24, 116:2,	I	:25, 120:13	58:18, 64:5, 71:13,
151:21	116:13, 118:2,	I'c	Implemented - 32:	82:19, 83:10,
Help - 8:18, 8:23,	123:23	$26: 4,66: 25,87: 2$	18, 63:3, 113:8,	96:14, 96:25,
10:13, 27:23,	Hourly - 10:2, 10:7,	103:4, 116:15,	120:3, 128:4,	97:20, 98:1, 98:8,
59:12, 61:21,	29:8	$156: 13$	128:16, 129:10,	98:14
64:24, 65:6, 81:17,	Hours - 19:21,	Identified - 66:17,	155:19, 155:20,	Incentives-21:14,
82:2, 82:4, 143:5	19:25, 20:1, 20:5,	$146: 2$	$155: 25,156: 17$	27:2, 34:23, 43:10
Helping - 59:13	21:6, 21:8, 23:6,	Identifying - 153:1	$156: 21,157: 18$	$64: 1,81: 5,83: 24$
Helps - 26:17,	23:11, 23:13, 23:14,	6	Implementing - 11	$90: 5,96: 1,129: 10$
59:1, 61:24, 62:25,	23:15, 37:17,	I'II-22:2, 49:18	$9: 21,157: 16$	129:12, 148:3
92:22, 92:23,	40:22, 51:20,	75:9, 78:22, 82:16,	Implications - 67:8	Incentivise - 59:12
109:15, 141:13	51:21, 51:23, 52:5,	93:14, 113:16,	, 140:7	Income - 65:14
Here's - 139:1	52:11, 54:19, 54:22,	123:10, 125:25,	Implies - 72:6	Incorporated - 81:
Higher - 7:1, 9	55:3, 55:23, 56:2,	128:8, 128:19	Imply - 51:2, 51:6	
10:22, 11:6, 11:20, $11 \cdot 21,12 \cdot 11,12 \cdot 22$	$56: 6,56: 9,56: 21$, $56.24,57 \cdot 24,58 \cdot 4$	Illustrated - 50:12	Import - 132:11,	Increase - 11:4,
11:21, 12:11, 12:22,	$56: 24,57: 24,58: 4$ $58: 13.58: 14.59: 2$	Illustrates - 29:21	132:25, 133:13	$\begin{aligned} & \text { 20:16, 28:23, } \\ & 30 \cdot 10 ~ 31 \cdot 15 \end{aligned}$
$\begin{aligned} & 12: 24,15: 13 \\ & 23: 10,23: 12 \end{aligned}$	58:13, 58:14, 59:2, $74: 17,77: 2,77: 4$,	Illustrative - 29:22	Importance - 10:11	$\begin{aligned} & 30: 12,31: 15,33: 11 \\ & 34: 18,35: 1.35: 14 \end{aligned}$
23:13, 36:12, 39:2	79	I'm - 1:19, 3:1, 4:1,	137:7	$\begin{aligned} & 34: 18,35: 1 \\ & 35: 17,35: 2 \end{aligned}$
42:20, 46:13,	100:15, 101:2,	21:3, 21:19,	Important - 9:3,	35:25, 39:7, 39:10,
46:25, 49:15,	101:7, 101:24,	6	15:20, 15:25, 16:5,	41:13, 46:18,
49:17, 58:3, 59:14,	106:10, 107:2,		18:22, 22:16,	56:16, 65:25,
70:6, 88:18, 89:1,	109:19, 109:20,		23:16, 25:24,	87:20, 92:18,
90:15, 90:16,	115:2, 115:8		27:16, 39:15,	105:24, 145:16,
91:19, 120:18,	House - 66:12		39:17, 61:20,	146:7, 146:9
145:18, 146:9,	78:25, 85:13,	, 8	62:14, 62:18, 64:3,	Increased - 8:7,
157:13	85:16, 93:18	10	64:16, 66:1, 67:7,	11:11, 15:4, 16:16,
Highest - 56:1,	Household - 47:23,	10	71:6, 81:15, 81:24,	16:17, 16:19,
61:13, 61:17,	102:21, 103:7,	11	87:12, 94:6,	20:15, 26:12,
123:22	103:13		106:17, 110:21,	31:23, 33:10,
Highlights - 91:2	Households - 102:	$124: 21,135: 22$	117:16, 117:18,	61:23, 62:13,
Historical - 67:24,	9, 102:10	$146: 22,148: 9$	125:18, 127:1,	109:1, 109:24,
150:4	Houses - 85:15	148:19. 156:23	127:6, 127:8,	141:3
Historically - 49:16	Hundred - 50:18,	Imagine - 69:25	127:10, 127:12,	Increases - 8:12
, 118:11, 118:16,	53:8, 53:23	$76: 14,80: 15$	127:14, 132:24,	9:10, 12:21, 15:18,
152:19	Hung - 78:10	Impact - 7:22	133:10, 135:14,	31:12, 82:5, 82:6,
Hold - 104:17,	HVAC - 146:4	$10: 17,15: 3,15: 6$	137:10, 138:16,	92:7, 109:18,
125:13, 136:5	151:12, 154:12	10:17, 15:3, 15:6,	140:20, 140:22,	137:24
Holistically - 130:1	Hybrid - 68:9,	38	143:4, 143:9,	Increasing - 6:22,
0, 130:16	114:11, 114:16,	59:18, 60:22	143:16, 143:23	9:9, 14:3, 15:9,
Holyrood - 22:25	114:20	71.14, 90.10	Imported - 131:16,	26:9, 33:1, 34:2,
Home - 47:13,	Hydro - 19:11,		132:9, 132:16,	43:1, 44:13, 61:18,
58:20, 70:21, 85:8,	37:15, 38:16,	90:21, 99:12,	132:20, 133:9,	62:23, 108:24,
85:11, 101:22,	66:13, 82:25,	$\begin{aligned} & 109: 21,112: 1! \\ & 143: 16 \end{aligned}$	133:18, 134:7	146:13
159:12	131:15, 131:16,		Imports - 132:19	Incremental - 48:2
Homes - 50:15,	134:22, 142:1,		Improve - 9:22,	1, 88:6
78:11, 81:2, 83:9,	142:6, 146:19,	$42 \cdot 18,45 \cdot 1,81 \cdot 9$	64:10, 94:8, 153:14	Incurred - 34:7
85:1, 103:18	148:13, 149:5	42:18, 45:1, 81:9	Improved - 34:4	IND - 144:16
Hoping - 11:7	Hydroelectric - 13	$\begin{aligned} & 132: 3,135: 19 \\ & 136.5 \end{aligned}$	Improvement - 153	Indeed - 91:4, 91:5,
Horn - 138:4	9:18	Implement -	19:	92:9, 136:6
Hot - 49:2, 79:6,	Hydroelectricity -	$34: 8,58: 20,59: 8,$	Improvements - 18	Indicated - 27:19,

62:2, 63:6, 100:15, 105:8
Indication - 14:23,
32:25, 38:19,
135:25
Indicative - 136:20
Indirectly - 18:12
Industrial - 38:7,
62:12, 121:9,
124:22, 134:17,
136:15, 144:12,
145:9, 146:2,
146:20, 146:24,
147:2, 147:7,
147:9, 148:10,
148:13, 148:14, 149:6, 149:10, 150:8, 151:3, 151:6, 151:7, 151:14, 151:22, 152:22, 155:9, 156:14, 158:2
Industry - 111:16,
112:9, 112:15,
121:20, 151:20,
151:21
Inequities - 8:24, 25:18, 64:24, 65:9, 91:24, 136:7, 136:25, 137:21, 138:6, 141:18
Infancy - 68:11
Infinite - 29:12
Influences - 17:14
Informal -5:21,
5:22
Informed - 150:14
Infrastructure - 10:
2, 10:6, 57:13,
59:9, 59:17, 59:20, 72:18, 95:20, 96:4,
96:5, 97:19, 98:13,
119:13, 119:22
Infused - 73:3
Inherent - 111:15
Initial - 65:18,
100:7, 105:17,
157:24
Initially - 63:9
Initiative - 117:14
Inputs - 25:2
Inquiry -5:21, 5:22
Inroads - 129:25
Inside - 101:9
Install-121:19
Installation - 48:22
Installations - 65:1

2
Installed - 69:3,
78:9, 78:24
Installing - 43:10
Institutional - 15:1
7, 42:11, 43:23, 44:3
Insulation - 74:18
Integrate - 85:2
Intended - 83:11
Intention - 153:15
Interacted - 82:20
Interactive - 28:22
Interest - 112:13
Interesting - 89:16
Interestingly - 68:3
Internal - 11:6,
11:12, 19:6, 32:1,
34:17, 54:23
Internally - 34:16, 40:1, 62:9, 119:4, 143:21
Interruptible-24:4
Intervention - 95:9
Introduce-1:6,
1:13
Introduced - 73:6
Introducing - 1:11,
157:20
Investment - 96:2,
96:3, 97:12
Investments -97:1
9
Involve - 62:16
Island - 2:10, 4:9,
7:8, 19:18, 23:2,
24:20, 25:5, 38:11,
39:19, 41:2, 53:3,
53:11, 56:21, 69:19, 77:16, 124:22,
144:11, 149:2,
158:1
Island's - 22:5
Isolated - 121:6
Issue - 108:17
Issues - 4:8, 4:11,
6:12, 130:19,
138:24, 141:17
Issuing - 59:25
I've - 1:20, 1:22,
2:16, 3:2, 3:19, 4:2,
4:5, 4:7, 4:10

Jeff - 66:11
John's - 42:4,
75:10, 77:11, 77:16

Judgement - 14:12 Jump - 36:24, 105:19
Jumps - 105:22, 106:1
Jurisdiction - 131:
6, 132:17, 138:21, 138:23, 139:5, 140:4, 157:9
Jurisdictions - 2:1
1, 52:7, 58:7, 61:4, 70:3, 95:16, 97:10, 119:25, 120:10, 128:1, 128:2, 128:9, 131:1, 132:22, 133:1, 133:19, 134:8, 139:15, 139:23, 150:6, 150:7, 150:18, 155:17, 156:1, 156:7,
156:15, 156:23
K

Key - 29:22
Kick - 95:10
Kicks - 96:8
Kickstarting - 96:1 5
Kilowatt - 17:3,
28:1, 31:6, 31:13, 33:8, 33:12, 92:18, 100:14, 101:2, 101:7, 101:19, 101:24, 115:24, 116:2, 116:12, 118:1
Kinds - 48:12, 72:17, 77:7, 86:15, 89:12, 93:20, 148:4, 149:20, 149:22, 153:20
Knowing - 71:3
Known-24:1
\square
Labrador - 7:8, 49:17, 52:25, 53:18, 53:20, 53:22, 66:12,
77:18, 130:21,
131:8, 133:23,
133:24, 138:25, 139:4, 150:11, 157:23
Lack - 81:24

Lag - 68:18
Laid - 141:19
Large - 28:5, 42:9,
44:1, 50:7, 58:11,
58:15, 62:5, 64:25,
85:5, 85:10, 120:1,
122:5, 139:17,
147:3, 147:9,
148:18, 156:21,
157:18
Largely - 88:6
Larger - 123:18,
148:2
Lastly -63:12
Late - 58:24, 69:24
Later-24:10,
44:17, 47:2, 48:2
Latter - 37:7, 44:12
Layered - 57:21
LDV - 41:25
Lead - 62:3, 125:19
Leading - 117:24,
129:24, 138:14,
138:15
Leads - 26:12
Learn - 79:22,
138:17
Learned - 139:22,
140:6, 150:16
Leave - 92:13
Leaves - 53:8
Ledger - 129:15
Left - 119:6, 140:10
Legacy - 157:10
Lessons - 131:5,
138:16, 139:22,
140:5, 150:16
Level - 10:22,
11:25, 14:3, 15:17,
16:22, 16:23,
16:25, 26:2, 26:4,
29:8, 32:1, 55:3,
61:13, 62:3, 65:13,
69:10, 69:19, 72:7,
83:3, 88:11, 131:25,
142:20, 145:12,
150:22, 151:2,
152:2
Levels - 15:9,
29:10, 29:11, 37:21,
39:21, 48:17, 55:1,
61:23, 61:25, 62:8,
62:10, 62:11, 62:13,
135:6, 153:1, 153:5
Levers - 86:15
Liam - 94:19
Liberty -17:9,

75:14
Lieu - 10:1
Light - 41:23,
58:17, 141:14
Lighting - 49:2,
146:4, 151:13
Likewise - 38:9
LIL - 18:11, 27:10, 27:11, 27:12, 143:12
Limited - 146:23
Limits - 99:11
Line - 37:1, 40:25, 58:22, 74:23, 143:15, 147:5, 153:17, 155:5
Linear - 76:1
Link - 53:2, 53:6
List - 146:1
Listed - 5:17,
61:11, 133:5, 147:1
Listings - 30:3
Loads - 10:3, 56:4
Loan - 47:16, 96:1, 105:8
Logical - 111:19
Long - 8:10, 14:21,
18:9, 68:12, 83:20, 106:18, 142:12,
142:15
Longer - 157:11
Look - 6:22, 11:18, 11:20, 14:18, 14:24, 15:20, 16:5, 18:10,
19:16, 20:11, 28:14, 28:17, 32:22, 33:3,
34:12, 35:20, 37:11, 38:8, 41:14, 45:10,
54:3, 55:24, 62:7,
65:5, 70:1, 70:2,
74:7, 81:7, 87:4,
90:7, 91:3, 91:7,
91:23, 92:14, 107:10, 112:18, 112:20, 117:18, 125:11, 130:16, 138:5, 139:6, 143:6 Looked - 7:19,
11:2, 15:3, 15:5, 15:23, 17:9, 29:7, 32:4, 36:14, 41:16, 41:22, 42:2, 42:6, 42:24, 43:4, 43:9, 45:4, 45:8, 46:6, 47:9, 48:14, 48:24, 56:9, 56:14, 57:14, 58:5, 58:7, 60:3,

67:3, 69:4, 73:12, 76:3, 80:2, 102:7, 106:13, 113:3, 115:22, 128:11, 128:15, 146:1, 146:5, 146:10, 148:20
Looking - 16:15, 35:18, 60:1, 64:7, 65:15, 68:3, 80:13, 84:25, 96:14, 98:2, 106:23, 108:19, 116:10, 125:22, 135:12, 150:10, 151:2, 157:22
Looming - 110:15
Losing - 108:25
Lot - 26:19, 29:17, 34:15, 36:1, 41:6, 44:7, 57:4, 58:17, 59:6, 59:11, 64:23, 65:17, 66:15, 74:12, 77:7, 83:7, 86:22, 90:15, 93:18, 93:19, 93:23, 97:7, 97:15, 99:20, 122:13, 128:22, 131:13, 131:22, 140:10, 142:22, 158:9 Low - 11:15, 36:10, 37:15, 38:17, 38:22, 38:25, 39:1, 39:6, 39:10, 42:15, 44:18, 48:15,
48:21, 48:23,
51:17, 51:20, 52:1, 52:2, 52:14, 54:25, 55:4, 67:14, 68:13, 68:17, 69:12, 77:9, 82:16, 83:7, 96:9, 117:23, 117:25, 118:2, 118:6, 118:15, 118:24, 144:8, 144:24, 145:22, 146:9, 146:17, 147:21 Lower - 6:25, 9:11, 9:14, 9:24, 12:8, 13:1, 13:24, 17:4, 22:6, 25:15, 36:22, 42:19, 44:20, 44:21, 45:22, 46:14, 47:24, 48:11, 49:18, 52:1, 56:6, 56:22, 57:15, 59:11, 73:21, 73:23,

80:18, 88:19, 89:3, 89:18, 120:19, 157:13
Lowest - 65:13
Lumped - 114:19
Lumpiness - 155:9
Lumpy - 147:3

\mathbf{M}

Macroeconomic -
112:13, 112:17,
112:18, 112:22,
112:24
Madam - 66:10, 94:13, 94:18, 104:10, 105:6, 108:6, 108:10, 158:16, 159:3
Madame - 124:10, 124:16
Magic - 8:5
Magnitude - 135:1
8, 137:8
Main - 40:18, 61:15
Maintain - 152:25, 153:16
Maintaining - 153: 4
Major - 50:14
Majority - 78:7, 78:8
Make - 4:20, 5:6, 16:18, 18:4, 18:22, 25:19, 39:8, 44:16, 45:6, 47:2, 53:17, 59:5, 63:8, 63:11, 65:17, 71:15, 73:19, 74:2, 75:9, 76:18, 84:23, 85:20, 86:2, 86:9, 86:22, 103:1, 104:18, 106:11, 120:8, 121:16, 122:23, 124:3, 140:5, 145:2, 148:4, 153:19
Making - 83:13
Management - 2:5, 6:24, 18:14, 22:15, 23:25, 24:15, 122:8
Managing - 99:21
Manipulate - 80:8
Many - 48:12,
52:10, 64:12, 69:2, 70:17, 70:18, 70:20, 70:22,
72:13, 94:20,

121:18, 128:9,
130:23, 134:22,
152:2, 155:25,
156:25, 157:18
Margin - 18:8, 79:15, 79:16 Marginal - 18:5, 18:21, 56:11, 56:13, 119:16, 134:5
Margins - 148:19
Maritime - 2:8
Mark - 75:17
Market - 2:6, 11:13, 11:14, 11:17, 11:19, 11:21, 12:20, 13:1, 13:10, 13:11, 13:15, 14:6, 14:14, 23:12, 41:4, 44:11, 65:1, 65:7, 68:15, 72:15, 95:7, 95:14, 97:2, 118:12, 130:19
Marketed - 72:6, 72:20
Marketplace - 73:1
0
Markets - 11:23, 11:24, 13:13, 15:5, 26:16, 70:8,
133:22, 143:18
Marshall - 159:7
Mass - 132:14
Massachusetts - 9
7:17, 128:20, 129:8
Masters - 4:14,
4:15
Match - 29:9
Material - 7:17
Math - 103:5,
115:21, 116:16,
116:17
Matters - 1:4
Maximal - 72:1
Maximization - 28 :
8, 126:16, 126:17,
126:23, 127:2
Maximize - 6:19,
6:20, 12:1, 17:25,
18:2, 56:1, 56:23,
62:21, 126:1
Maximizing - 63:5, 126:12
Maximum - 25:13, 123:6, 126:8
MDV - 41:25
Means - 15:19,
82:13, 82:14,
91:19, 93:24, 135:4

Measure - 10:6,
62:15, 90:21,
131:8, 154:15
Measured - 76:6
Measures-7:16,
18:14, 25:14,
48:13, 145:4,
145:16, 145:20,
145:21, 146:1,
147:1, 147:17,
147:25, 149:20
Mechanical-1:21
Mechanism - 38:1,
113:17, 114:3
Medium - 11:24,
41:24, 41:25
Meet - 7:4, 53:2,
53:7
Meeting - 53:18
Meets - 147:15
Megawatts -9:7,
22:8, 52:23, 52:24,
53:6, 53:9, 53:23,
54:2, 54:4
Melissa-3:25,
62:1, 63:6, 123:10
Memorial-42:12,
43:21, 44:22
Message - 110:14,
110:18, 110:21
Meter-59:21,
119:24, 120:1,
120:3, 120:8
Metering - 10:2,
10:6, 57:13, 59:9,
59:16, 59:20,
98:10, 98:13,
119:13, 119:22
Meters - 121:18
Method - 36:1,
120:15
Metrics - 30:10
Midday - 40:4
Million - 12:4, 12:9,
12:22, 21:11, 21:17,
21:18, 21:24,
55:10, 55:13
Millions - 21:22
Mills - 152:24
Mineral - 151:5,
152:23
Mini - 78:9, 84:6, 85:3, 113:13
Minimal - 12:10,
42:5, 48:17, 76:8
Minimize - 56:2,
63:5, 82:4, 126:2,

126:3, 136:7,
136:25, 138:6,
141:18
Minimizes - 137:7
Minimum - 64:6
Mining - 151:20,
152:7
Ministry - 3:8
Minor - 72:4, 114:5
Minus - 50:23,
75:17, 75:25, 76:3, 77:11, 83:5
Mitigate - 81:2,
91:19
Mitigating - 23:4,
83:21, 136:22
Mitigation - 8:6,
8:12, 16:4, 21:21, 27:23, 33:6, 35:7,
38:21, 61:18,
79:14, 110:2,
120:16, 120:25,
127:6, 127:7,
127:9, 127:13,
134:16, 135:19
Mix - 29:9
Model - 10:23,
10:25, 11:25, 26:19,
28:18, 28:22, 29:7,
38:21, 48:25,
57:24, 80:20,
81:23, 82:5, 83:16,
111:2, 139:1, 139:8,
139:11, 139:12, 150:20
Modelled - 29:14,
42:9, 42:13, 43:22,
82:17, 83:6
Modelling - 2:1,
6:21, 7:6, 12:13,
13:7, 19:10, 19:12,
70:11
Models - 44:14,
70:9
Moderate-71:14
Modular - 121:22
Modulating - 154:2 0
Monday - $1: 3$
Monetary - 115:3
Money - 8:18,
45:25, 112:11
Monies - 65:22
Monitor - 10:2
Month - 123:7,
123:22, 123:24,
153:18

Monthly - 123:5
Months-68:5,
68:11, 143:14, 143:15
Morning - 1:3, 1:9,
1:18, 2:25, 3:25, 39:19, 61:13,
66:10, 89:17,
94:18, 108:10,
118:13, 124:17,
124:19, 159:8,
159:11
Morning's - 71:11
Motor - 153:10
Motors - 146:3,
149:21, 151:16,
154:11
Mouth - 78:13
Move - 7:25, 23:17,
87:1, 113:2, 113:16,
113:20
Movement - 106:1
2, 137:25
Moving - 3:15,
43:24, 48:5, 58:4,
80:5, 101:8, 104:4,
114:1, 122:15,
135:12
Much - 10:9, 11:20,
12:8, 12:11, 39:20,
41:7, 44:2, 44:11, 44:22, 51:7, 55:3, 57:7, 58:3, 64:4, 66:13, 68:15, 70:8, 71:19, 88:6, 91:14, 94:12, 101:7, 102:9, 102:16, 103:8, 108:1, 120:21, 120:25, 124:12, 127:15, 134:7, 140:2, 140:14, 149:19, 150:1, 156:20,
157:19, 158:24
Multiple - 9:3, 29:8, 90:19
Municipalities - 98 :12
Muskrat - 7:3, 7:7, 8:14, 9:19, 10:20, 12:6, 19:17, 19:24, 20:6, 20:10, 20:11, 26:16, 27:7, 32:15, 52:17, 52:22, 53:2, 53:7, 54:1, 54:3, 54:14, 110:15
\mathbf{N}

Nalcor - 13:9, 14:12, 14:22, 112:6, 142:2, 142:6
Narrow - 29:14
National-4:11
Natural - 13:19, 14:2, 118:20
Near - 71:4, 71:5, 117:5
Necessary - 55:17, 148:4
Needed - 127:22
Neglected - 5:23
Nesters - 93:17
Net - 9:14, 21:21, 21:24, 35:1, 35:7, 38:25, 53:24, 92:4, 92:6, 108:24,
132:20
New - 8:17, 13:12, 13:17, 46:11, 53:11, 56:3, 97:17, 107:6, 112:11, 121:21, 139:17, 145:21, 155:17, 157:20
Newfoundland - 4: 10, 5:21, 28:10, 36:21, 37:5, 38:6, 47:15, 49:17, 52:6, 60:11, 66:12, 68:17, 70:7, 77:25, 81:13, 94:19, 100:12, 102:20, 103:12, 106:6, 106:7, 112:8, 120:2, 123:3, 130:21, 131:7, 132:6, 133:22, 133:24, 134:3, 138:25, 139:3, 142:2, 143:3, 146:25, 148:11, 148:20, 150:11, 151:23, 156:3, 157:23
Newfoundland's 67:24
Nicely - 74:3
Night - 58:24, 59:1
Nimble - 97:4
Nineteen - 2:17
Noise - 73:9
Nominal - 116:23, 116:25
Non - 11:17,
122:22, 122:25, 123:20, 124:6

Noon - 132:7
North - 13:17, 13:23, 14:4, 132:5, 138:9, 139:15, 156:4
Northeast - 97:16
Northeastern - 118 :14
Northern - 131:21
Northwest - 60:5
Note - 8:15, 8:20, 10:11, 10:19, 10:23, 12:1, 12:24, 22:2, 27:9, 32:9, 34:25,
40:24, 62:11, 62:20,
64:15, 68:8, 117:10
Noted - 12:19, 32:9
Notion - 72:25
Notwithstanding 139:22
Nova - 2:9, 4:8,
13:12, 13:14, 53:11, 115:9, 115:12, 115:19
Numbers - 13:21, 14:21, 69:6, 70:9, 116:5, 116:18

Objectives - 86:21
Obligations - 115:1
0, 115:12
O'brien - 94:15,
94:17, 94:19,
95:21, 96:12,
96:22, 97:8, 97:21,
97:25, 98:18,
99:15, 100:3,
100:20, 101:10,
101:16, 102:2,
102:17, 103:10,
103:19, 104:2,
104:8, 104:13,
104:19, 104:24,
105:4, 105:5,
105:16, 105:23,
106:3, 106:20,
107:8, 107:13,
108:4, 108:8
Observation - 74:2 Observations - 61:
7, 70:2
Observed - 73:5
Obtain - 11:11
Occur - 8:9, 25:18,
$37: 7,58: 14,58: 23$,
67:15, 90:5, 91:25,

109:18, 110:2,
112:24, 123:25,
127:20, 138:7
Occurred - 65:12
Occurring - 65:13
Occurs - 35:22,
68:21, 75:2
Odd - 30:4
Offer - 98:14
Offered - 82:18,
83:1
Offering - 146:19
Office - 3:7
Offs - 153:20
Offset - 20:17
Often - 120:1,
122:12, 156:24,
157:15
Oftentimes - 121:1
7
Old - 68:5
One - 7:13, 19:3,
20:14, 28:17,
30:10, 43:21,
44:21, 45:9, 46:8,
49:19, 50:17,
50:22, 56:25,
67:17, 70:19, 71:4,
71:5, 73:14, 74:10,
75:24, 76:9, 79:10,
80:23, 84:2, 84:22,
87:21, 89:15,
89:23, 94:22, 95:2,
97:22, 98:24,
99:18, 105:6,
106:4, 107:14,
117:10, 117:13,
125:14, 129:8,
129:23, 131:5,
132:10, 140:24,
141:5, 143:22,
152:12
Ones - 78:10,
94:23, 146:25,
147:1, 157:12
Ontario - 60:4,
156:3
Onward - 1:23
Open - 85:10
Opening - 75:9
Operate - 76:8
Operations - 152:2
5, 153:3
Opinion - 14:23,
122:2, 125:17
Opportunities - 8:3
93:19, 151:9

Opposed - 34:16, 60:18, 62:21, 114:17, 123:23, 124:6, 157:12
Opposite - 92:2
Optimal - 99:22
Optimistic - 27:21
Option - 57:8
Options - 7:13,
36:4, 36:5, 56:25,
83:8, 90:1, 96:6,
125:6
Order - 12:21,
19:20, 19:24, 20:1,
21:7, 21:11, 21:18,
21:22, 22:8, 25:1, 29:5, 31:5, 31:12,
51:6, 51:19, 52:22, 52:23, 53:5, 53:7,
54:2, 54:4, 54:18,
55:9, 55:13, 55:25,
125:19, 136:24
Ore - 151:5, 152:23
Oregon - 156:5
Otherwise - 8:25,
39:5, 64:25, 65:3,
65:10, 73:25, 86:8, 91:25, 136:8
Ourselves - 147:19
Outcome - 110:25,
125:20, 127:23, 147:8
Outcomes - 9:23,
26:13, 27:5, 61:16,
119:3, 126:7,
142:12, 154:23
Outline - 1:14,
2:23, 5:5, 6:12,
10:14, 41:19
Outlined - 11:2,
124:23
Outlines - 6:16,
49:9
Outlook-14:20
Output - 153:17
Outset - 124:23
Overlaid - 90:12
Overnight - 40:3
Overplay - 76:24
Overtime - 141:1
Overview - 20:18
Overwhelmingly -
148:17
Own - 14:12,
15:12, 65:3, 85:16, 131:16, 134:4,
137:16

60:7, 65:18, 74:25, 82:13, 83:17,
106:6, 107:16,
107:23, 108:2,
119:16, 122:17,
155:19, 155:24,
156:8, 156:16,
157:25, 158:11
Priming - 95:18
Prince - 2:10, 4:8
Principal-4:1,
20:14
Principles - 38:10
Prior - 33:25
Priori - 96:18
Problem - 23:2,
23:4, 27:23
Proceedings - 2:14
, 130:14
Processes - 7:6,
151:17
Processors - 152:2
3
Produce - 27:25
Producing - 114:2,
153:6
Product - 47:16,
113:16, 143:10,
153:6
Production - 19:12
, 88:7, 147:5,
153:1, 153:5,
153:17, 155:5
Profits - 86:20
Program - 25:7,
25:16, 80:24,
85:18, 86:6, 91:7,
91:23, 94:6,
150:22, 150:24
Programed - 58:12
Programmatic - 8:
23, 15:10
Programs - 23:7, 24:16, 24:24, 25:9, 43:6, 48:17, 49:4, 51:19, 64:17, 64:19, 64:22, 64:23, 65:1, 65:6, 86:16, 90:4, 90:8, 91:16, 91:18, 91:24, 93:13, 93:20, 93:25, 97:18, 107:24, 129:11, 138:9, 143:6, 145:7, 145:9, 145:11, 146:19, 146:22,

147:22, 147:23,
148:1, 149:25,
150:9, 156:24,
158:5, 158:7, $158: 9$
Project - 7:3, 8:15,
10:20, 139:18
Projected - 35:17
Projections - 136:1
9, 144:22
Projects-3:17,
9:19
Promote - 40:12
Promoted - 15:10
Promoting - 114:1
6
Promotion - 111:8
Prompted - 15:11
Proposing - 87:18
Proposition - 108:
3
Protect - 93:11
Protecting - 93:25
Provide - 27:2,
56:6, 65:7, 76:22,
98:8, 98:25, 120:7,
120:24
Provided - 13:21,
14:11, 63:23, 95:1, 142:4
Provides - 18:25, 110:6, 111:23, 111:25
Providing - 27:11,
64:5, 74:15
Province - 2:20,
7:1, 7:10, 9:5, 11:5, 12:13, 18:3, 18:8, 24:1, 24:5, 34:11, 35:18, 40:24, 45:24, 50:8, 60:2, 63:12, 65:15, 68:7, 69:13, 77:17, 93:16, 94:5, 95:7, 112:14, 125:11, 136:21, 138:13, 140:5, 140:23, 141:21
Provinces - 2:18,
2:19, 59:23,
124:25, 138:15
Provincial - 10:12,
21:7, 63:14, 65:23,
110:12
Proving - 98:16
Provision - 64:8
Psychological - 71 :6, 72:2

Pull-71:10, 86:17
Pulling - 77:8,
86:23
Pulp - 151:5, 151:24, 152:4, 152:24, 155:6
Pump - 5:18, 21:4, 24:10, 34:23, 43:9, 45:18, 45:22,
47:14, 47:18, 48:22, 50:4, 50:17, 64:8, 65:11, 67:6, 76:10, 76:21,
76:22, 79:1, 79:5,
80:7, 80:12, 84:6,
95:18, 100:5,
100:14, 100:24, 101:25, 103:8, 104:5, 105:8, 105:12, 113:4, 113:14, 114:2, 129:10, 132:1, 139:24, 153:11
Pumps - 18:15, 21:15, 24:7, 42:10, 44:7, 46:1, 46:8, 47:10, 47:23, 48:18, 50:9, 50:10, 50:14, 50:25, 51:25, 52:3, 52:4, 52:8, 64:2, 64:6, 64:7, 74:24, 75:2, 76:7, 77:13, 78:2, 78:8, 78:17, 78:24, 80:3, 86:4, 98:20, 113:2, 128:23, 146:3, 149:21, 154:12
Purchased - 118:2 5
Pure - 72:15,
126:16
Purely - 150:10
Pursue - 93:19,
97:6
Pursued - 73:23
Pursuing - 26:25,
89:24
Push - 96:9,
118:23, 128:21
Pushing - 129:6, 129:13
Puts - 73:4
Putting - 116:17, 125:14, 136:19, 140:19, 141:5, 141:11

Qualifications - 2:
1
Quantitative - 33:3
Quantities - 19:25,
20:4, 93:3
Quantity - 10:21,
15:21, 93:4
Quebec - 3:20, 4:9,
13:14, 53:12, 60:4,
82:25, 84:21, 156:3
Quicker - 65:20
Quinstant - 122:22
, 122:23, 122:25,
123:1, 123:21,
124:5, 124:6
Quizzing - 152:3
R

Radiation - 79:6,
79:8
Radiator - 85:4
Raised - 75:8,
78:3, 84:20
Ramps - 21:10
Ran-3:6, 29:23
Range - 20:8, 25:9,
77:9, 77:11, 96:6,
154:22
Ranges - 19:19,
20:5, 21:16
Ranked - 129:3
Rapid - 148:1
Rapidly - 121:20
Rather - 23:14,
46:22, 49:25,
82:20, 103:25,
122:22, 147:8
Ratio-24:25
Reach - 86:18
Reaching - 21:24
Ready - 132:15,
155:11
Realistically - 99:7
Realized - 79:2
Reap - 56:19, 132:4
Reason - 50:10,
73:22, 74:6, 74:8,
76:13, 120:23,
125:24
Reasonable - 14:1
4, 14:17, 14:23,
81:23, 85:19, 116:4,
142:11, 147:16
Reasonably - 59:1

7, 140:12, 142:10
Rebate - 34:22
Rebates - 10:16,
64:8
Received - 13:2,
13:9
Receiving - 55:9
Recent - 59:22,
112:9
Recently - 120:2,
129:3, 129:9
Recognize - 117:4
Recognizing - 147:
17, 148:2
Recommend - 59:1
8, 63:19, 90:21,
90:23, 92:15,
121:2, 121:13,
121:23, 122:14,
125:10
Recommendation

- 113:4, 120:14,

138:3
Recommended - 1 21:8
Recommending 60:16, 64:21, 125:24, 140:13
Reconvene - 159:1 0
RECONVENED - 1 05:2
Records - 102:20, 115:1
Recover - 77:6
Red - 33:7
Reduce - 8:18, 9:6,
9:7, 18:16, 26:11,
31:4, 38:1, 56:18,
61:24, 81:25,
109:16, 121:15,
124:2, 153:3
Reduced - 7:20,
16:1, 31:22, 62:1,
141:4
Reduces - 92:24
Reducing - 18:2,
18:7, 22:19, 63:15,
127:15, 127:19
Reduction - 13:2,
18:18, 31:16,
31:17, 62:16,
108:21, 112:25
Reductions - 44:15
, 81:22
Referenced - 100:6
, 100:10, 123:20

Referred-86:7,	Remove - 70:15	21:5, 24:9, 42:14,	Reveal - 63:10,	$17: 16,17: 18,20: 4$
98:22	Renders - 35:25	50:12, 50:19, 51:4,	115:24	20:9, 23:10, 25:3,
Refers - 84:4,	Replacement -52:	52:9, 75:19, 76:15,	Revenue - 8:2,	26:12, 29:7, 31:25,
115:2	9	80:22, 82:21,	11:6, 12:12, 17:7,	32:1, 33:1, 38:7,
Refineries - 152:13	Replaces - 109:10	101:23, 101:25,	17:11, 20:17, 22:18,	39:7, 40:1, 40:13,
152:23	Replacing - 43:21,	113:14, 114:3	39:8, 41:10, 41:14,	40:22, 41:4, 54:18,
Refinery - 151:5,	84:7, 110:25, 158:8	Resistant - 79:20,	55:8, 87:22,	55:2, 55:9, 56:23,
155:5	Report - 4:21, 5:1,	113:17	108:19, 108:20,	61:24, 62:7, 62:11,
Refining - 151:5,	5:13, 5:25, 6:4, 6:6,	Resource - $2: 9$,	108:25, 119:5,	62:22, 62:24, 63:6,
151:25	10:14, 10:19,	7:9, 23:3, 28:8,	126:2	109:23, 115:1
Refit - 155:6	19:23, 30:2, 32:9,	90:24, 134:9	Revenues - 11:11,	Save - 40:11,
Reflect - 32:8,	40:19, 49:20, 61:1,	Resourced - 142:5	12:10, 12:11, 12:21,	51:19, 52:4, 52:10
32:12, 48:21,	66:13, 67:11, 69:8,	Resources - 4:16,	13:2, 17:16, 20:3,	Saved - 112:11
151:12	75:4, 75:5, 78:6,	14:4, 54:14	21:12, 21:20, 30:11,	Saves - 23:5
Reflected - 36:9	84:1, 84:5, 87:6,	Respect - 8:1,	30:12, 33:11, 33:24,	Saving - 45:25,
Reflecting - 122:24	87:7, 100:9,	16:9, 35:12, 50:11,	34:1, 34:2, 34:3,	154:15, 154:16
, 149:9	100:13, 108:15,	80:3, 83:8, 94:23,	34:6, 34:13, 34:17,	Savings - 8:16,
Reflects - 38:3,	110:18, 114:24,	95:3, 99:1, 99:3,	35:8, 54:12, 55:4,	16:1, 21:9, 21:10,
44:12, 51:10	119:2, 119:12,	106:5, 107:15,	55:12, 56:1, 88:12,	23:9, 23:24, 29:2,
Refrigeration - 49:	125:2, 133:5,	138:14	108:24, 126:9,	31:23, 46:18,
2	134:14, 154:11	Respects - 130:23	126:13, 126:18,	46:21, 47:17,
Region - 13:20,	Representation-1	Respond - 58:9,	127:3, 127:14	47:20, 48:2, 48:10,
14:7, 140:4	25:14	60:2, 60:6, 71:16,	Reviewed-26:2,	48:14, 48:18, 49:1,
Regions - 140:6	Representative - 1	78:23, 80:1, 122:9	26:3	50:5, 50:8, 50:11,
Regrets - 10:3	4:14	Responding - 16:1	Reviews - 6:6	50:24, 51:1, 51:7,
Regulation-4:4	Represented - 89:	4	Revised - 6:4	51:9, 51:10, 51:14,
Regulatory - 2:18,	12	Response - 5:20,	Revision-5:24,	51:18, 74:20,
4:7, 4:12, 132:3	Require - 101:6	5:22, 9:2, 18:17,	125:4	100:5, 101:19,
Relation - 158:1	Required-7:3,	22:24, 23:16, 24:2,	Revolve - 64:4	101:24, 103:8,
Relative - 7:15,	34:25, 53:6,	24:3, 24:15, 25:23,	Rewired - 79:1	105:17, 105:19,
12:23, 13:2, 16:20,	125:19, 133:5,	26:11, 37:23, 38:14,	Reworking - 147:4,	109:23, 109:25,
43:25, 47:17,	137:24	48:5, 48:19, 48:24,	147:5	120:1, 120:8,
73:21, 114:5, 118:5,	Requirement - 17:	61:15, 62:13,	RFP - 59:25	149:25, 154:9,
146:7, 146:9,	8, 17:11, 64:9,	74:25, 88:4, 91:17,	RIM - 90:10	154:19, 155:3,
146:13	127:15, 127:16	95:2, 100:11,	Rise - 12:3, 55:12	155:12
Relatively - 11:15,	Requirements - 7:	107:20, 107:24,	Rising - 12:8, 55:2	Saw - 33:25, 38:4,
36:12, 43:23,	9, 19:18, 38:8,	143:7, 156:2,	Roads - 70:19	41:1
43:24, 58:11, 69:12,	53:3, 53:8, 53:19	158:5, 158:12	Roll - 57:12, 59:10	Scale - 10:1, 43:25
69:13, 72:4, 75:11,	Requires - 76:20	Responses - 36:9,	Rolls - 86:8	Scattered - 69:20
106:8, 114:5,	Research - 70:1,	107:17	Room - 39:25,	Scenario - 17:3,
117:23, 118:2,	77:17, 81:14,	Result - 8:25, 9:11,	89:11	21:25, 29:15, 31:4,
118:6, 118:7,	87:17, 90:6, 143:3,	48:13, 122:12	Rough - 33:2	31:9, 33:5, 34:13,
121:18, 122:9,	143:21	Resulting - 17:16,	Row - 5:17, 31:7,	35:1, 39:7, 39:10,
126:1, 126:2,	Researched - 78:2	49:4, 113:24	87:14	43:18, 44:18,
127:3, 127:13,	0	Results - 27:4,	Rubrics - 25:8	54:24, 59:14,
128:24, 134:23,	Resemble - 116:13	29:21, 30:1, 43:14,	Running - 108:22	67:14, 79:9, 80:4,
146:6, 146:8,	Residence - 103:2	61:1, 61:2, 61:3,	Rural - 38:6, 72:3	80:9, 87:21, 88:13,
151:21	2, 103:24	126:12, 130:8,		88:17, 99:3, 103:2,
Reliability - 18:10	Residences - 25:2	133:2, 133:4,	S	104:5
Reliable - 131:8	0	143:2, 144:4		Scenarios -6:21,
Reliably - 133:2	Residential - 5:10,	Retail - 69:21,	Sale - 26:15	6:24, 7:14, 7:23,
Reliant - 112:9	15:16, 42:8, 44:1,	157:5	Sales - 6:25,	10:25, 15:24,
Remaining - 7:4,	49:15, 50:1, 122:11,	Retain - 83:24	$9: 9,11: 3,11: 6$	16:24, 17:25,
26:15, 53:20	122:18, 122:20,	Retained - 99:4	$11: 8,12: 1,12: 3$	21:23, 26:19,
Remains - 7:7	156:22, 157:2,	Retention - 99:23	$12: 7,12: 11,12: 16$	27:22, 28:18, 29:9,
Remarked - 75:16	157:12, 157:14	Retire - 22:25	12:23, 16:17,	29:13, 29:23, 30:1,
Remedies - 141:15	Resistance - 21:2,	Retool-153:18	16:18, 16:22,	30:4, 30:5, 34:14,

102:21, 115:1,	142:19, 142:25,	USD - 151:19,	Vary - 12:17, 25:12,	35:25, 55:18, 67:4,
115:8	143:13	152:7	135:6, 157:9	67:6, 69:24, 88:3,
Totals - 22:4	Types - 22:10,	Used - 19:10,	Vast - 78:6, 78:7	91:1, 93:3, 109:2,
TOU - 65:18, 143:7	24:16, 36:8, 43:5,	19:11, 29:7, 32:2,	Vehicle - 9:25,	145:2, 147:8,
Towards - 44:11,	78:4, 78:9, 89:8,	32:15, 37:15,	21:15, 30:8, 34:21,	147:17, 154:17
53:11, 54:17, 72:5,	121:21, 122:6,	42:23, 49:10, 52:2,	34:24, 43:6, 44:14,	West - 69:18, 156:4
72:20, 83:21,	122:9, 123:13,	56:4, 57:23, 64:1,	46:11, 46:12, 46:19,	We've - 26:2,
96:10, 128:21,	123:19, 124:1,	70:9, 78:18, 85:8,	46:20, 46:22,	27:14, 42:9, 63:23,
129:1	133:1, 133:4,	121:9, 122:6,	46:25, 47:3, 67:25,	68:12, 73:16,
Track - 19:13	150:8, 151:8	128:16, 151:15,	70:14, 70:23, 71:2,	97:15, 99:13,
Trade - 153:20	Typical - 39:14,	155:20, 156:1,	71:17, 72:14,	114:19, 116:1,
Traditional - 35:19	152:21, 153:2,	156:9	73:13, 73:20,	116:11, 135:11,
Traditionally - 129:	153:7	Users - 152:22	74:15, 75:1, 129:1,	135:15, 140:18
23	Typically - 119:25	Uses - 45:8,	129:12, 130:12,	What's - 3:7, 12:9,
Training - 3:3		109:11, 109:14,	132:2	31:14, 39:4, 40:16,
Trajectories - 37:1	U	110:25, 111:1,	Vehicles - 10:16,	69:5, 69:6, 73:9,
2	Uncommon	146:2, 146:10,	21:1, 41:23, 41:24,	91:8, 94:6, 96:18,
Trajectory - 37:10,	9, 93:15	147:13, 149:22	42:1, 44:16, 44:23,	111:22, 119:6,
37:13, 52:7		Using - 10:5,	46:7, 56:8, 56:16,	131:23, 133:5,
Transfers - 11:16		26:11, 26:25, 27:1,	57:10, 57:16, 58:6,	141:1, 143:20,
Transform - 65:6	Un	34:16, 45:15,	58:9, 58:10, 59:5,	145:3, 147:16,
Transport - 20:24,	38:4, 136:2, 136:3	45:16, 45:20,	63:8, 67:5, 67:10,	150:10, 150:15,
22:11, 111:2, 111:24	Underpinnings - 1	47:14, 47:15,	67:15, 68:6, 68:10,	150:17, 154:6,
Transportation - 4	$17: 13$	47:23, 63:7, 90:7	70:19, 72:5, 72:8,	154:17, 156:17,
1:18, 41:22, 44:9,	Understandable -	102:10, 122:19,	72:12, 72:13,	157:4
57:9, 59:13, 70:11,	$122: 16$	135:23, 153:11,	72:21, 73:8, 73:24,	Whereas - 31:24,
94:24	Understood - 122:	156:9	74:11, 97:3, 114:10,	42:10, 51:20, 54:2,
Travels - 159:12	12, 138:20, 139:13,	Utilities - 24:17,	114:11, 114:16,	69:19, 157:17
Treason - 78:15	$142: 1,148: 8$	97:18	114:21, 129:2,	WHITE - 107:1,
Trend - 37:4, 73:6,	Undertake - 159:6	Utility - 4:12	130:2	107:11, 107:19
116:24	Undertaking - 138:	30:11, 30:12, 33:11,	Verify - 60:11	Whited - 3:23,
Trending - 118:19	18	33:24, 35:8, 72:8,	Vermont - 3:9,	3:24, 3:25, 47:1,
Trends - 75:24	Unequally - 8:21	73:2, 88:14, 90:23,	3:20, 128:19,	55:17, 55:20,
Tricky - 35:16	Unfold - 137:21	95:9, 96:3, 98:16,	128:20, 132:14	60:20, 73:12,
Trough - 107:5	Unique - 85:15	108:23, 126:2,	Verses - 71:17,	73:15, 74:9, 97:14,
Turn-35:11, 67:11,	Unit - 88:8	126:9, 126:13,	102:25, 120:19	97:23, 98:6,
75:2, 75:3, 84:1,	United - 2:	126:17, 127:2,	Versus - 151:24	106:16, 119:20,
85:12, 125:1,	$14: 5,59: 24,60: 5$	127:13	Vice - 1:19, 3:1	120:17, 121:3,
134:11, 144:6	$118: 14,131: 2$	Utility's - 24:25	View - 112:13	121:12, 122:4,
Turning - 41:12,	Units - 43:18		Volatile - 74:14	123:17, 129:16,
52:13, 55:16, 61:6,	Universal - 1	V	Volatility - 74:18	155:15, 155:22,
91:21	University - 42:12,		Volume - 12:16	156:10, 156:19,
Tweak - 147:22	$43: 21,44: 22$	Valuable - 25:25	Volumes - 54:12,	157:8, 158:3
Twenty -95:19	Unreasonable - 13	$\text { Value }-5: 17,5: 1$	55:2, 55:5, 55:6	Whole - 32:24,
Twice - 37:14	$: 22,36: 18$	$18: 7,18: 12,18: 19,$		130:13, 138:11,
Twinco - 53:22	Untoward - 94:1	22:23, 23:4, 24:21,	W	149:2
Two - 4:20, 15:19,	Upfront - 105:10,	$25: 3,25: 4,25: 22$	Walk - 100:21	Wholesale - 2:6,
20:23, 31:15,	105:12	$27: 15,56: 2,61: 18$	Walls - 78:11	118:18
31:21, 36:24,	Ups - 136:13	62:23, 92:20,	Water - 49:2, 79:6,	Who's - 8:21
39:18, 45:8, 45:17,	Uptake - 73:7,	$117: 20,133: 14$	79:8	Wide - 25:9,
46:5, 50:21, 53:14,	Uptake - 73.7 , $77.24,146: 13$	117:20, 133:14	19:8	134:25, 135:3
54:11, 57:23, 69:20,	77:24, 154:14	Values - 44:		Widely - 122:6,
71:24, 75:20, 77:2,	Upwar	Variabil	139:20	156:21
77:4, 77:5, 78:3,	Upwards - 21:24	$\text { Variable - } 153: 12$	We'd - 151:25	Width - 35:23,
92:10, 95:19, 112:2,	Usage - 20:15	Variances - 135:5	Week - 78:14	35:24
115:22, 137:4,	100:25, 103:13,	Variant - 29:6	We'll - 1:5, 113:20	Will - 9:5, 9:6,
139:19, 142:16,	123:22	Variation-22:9	We're - 17:1, 28:14,	10:17, 12:16,

